下载MNIST数据集并使用python将数据转换成NumPy数组(源码解析)

下载MNIST数据集并使用python将数据转换成NumPy数组

    • 首先来分析init_mnist函数
    • 接下来继续分析load_mnist函数
    • 实现数据集转换的python脚本的代码
    • 显示MNIST图像并确认数据

下载MNIST数据集并将数据转换成NumPy数组的Python脚本里面最重要的就是load_mnist函数,其他项目想要调用数据集的话,就可以调用load_mnist函数,得到一个字典类型的数据,字典的值是一个Numpy数组。

这些过程是如何实现的,现在开始逐字逐句分析源码:

在load_mnist函数中第一句话是

    if not os.path.exists(save_file):init_mnist()

如果说数据没有被下载,那么就调用init_mnist()函数。

首先来分析init_mnist函数

在init_mnist()函数中,可以发现调用了download_mnist()函数。

def init_mnist():download_mnist()dataset = _convert_numpy()print("Creating pickle file ...")with open(save_file, 'wb') as f:pickle.dump(dataset, f, -1)print("Done!")

在download_mnist()函数中,可以看到又调用了_download(v)函数。

def download_mnist():for v in key_file.values():_download(v)

在_download(v)函数中,可以看出,它最重要的一句话就是urllib.request.urlretrieve,这个语句的意思就是把数据集下载到file_path路径下的文件里面。

def _download(file_name):file_path = dataset_dir + "/" + file_nameif os.path.exists(file_path):returnprint("Downloading " + file_name + " ... ")urllib.request.urlretrieve(url_base + file_name, file_path)print("Done")
url_base = 'http://yann.lecun.com/exdb/mnist/'
key_file = {'train_img':'train-images-idx3-ubyte.gz','train_label':'train-labels-idx1-ubyte.gz','test_img':'t10k-images-idx3-ubyte.gz','test_label':'t10k-labels-idx1-ubyte.gz'
}

然后回到download_mnist()函数,这里面调用了_convert_numpy函数

	# download_mnist()函数dataset = _convert_numpy()print("Creating pickle file ...")with open(save_file, 'wb') as f:pickle.dump(dataset, f, -1)print("Done!")

我们看 _convert_numpy函数:这函数返回一个字典数据类型,也就是键值对。这个函数里面调用了 _load_img函数。

def _convert_numpy():dataset = {}dataset['train_img'] =  _load_img(key_file['train_img'])dataset['train_label'] = _load_label(key_file['train_label'])    dataset['test_img'] = _load_img(key_file['test_img'])dataset['test_label'] = _load_label(key_file['test_label'])return dataset

我们看 _load_img函数,由print(“Converting " + file_name + " to NumPy Array …”)可以了解到,这个函数是用来将数据集转换成numpy数组的。

_load_img函数里面gzip.open(file_path, ‘rb’),数据集是gz后缀的,这句话就是把这个数据给读出来。

def _load_img(file_name):file_path = dataset_dir + "/" + file_nameprint("Converting " + file_name + " to NumPy Array ...")    with gzip.open(file_path, 'rb') as f:data = np.frombuffer(f.read(), np.uint8, offset=16)data = data.reshape(-1, img_size)print("Done")return data

_load_img函数里面data = np.frombuffer(f.read(), np.uint8, offset=16)这句话,是把f.read()里面的数据转化成numpy数组,而且数组元素类型是uint8,读取的起始位置是16,为什么是16,可以看数据集TRAINING SET IMAGE FILE (train-images-idx3-ubyte)的存储内容:

[offset] [type]     [value]     [description]`
`0000   32 bit integer 0x00000803(2051) magic number`
`0004   32 bit integer 60000      number of images`
`0008   32 bit integer 28        number of rows`
`0012   32 bit integer 28        number of columns`
`0016   unsigned byte  ??        pixel`
`0017   unsigned byte  ??        pixel`
`........`
`xxxx   unsigned byte  ??        pixel

这部分是训练集的image信息,image信息是通过灰度值存储的,前16字节是数据集的信息,后面的字节都是图片的信息。所以要存图片的信息,就从16字节开始。

后面的data = data.reshape(-1, img_size)这句话,意思是把这个numpy数组变成行为1,列为img_size的样子。那么img_size函数最后就返回一个numpy数组。至此, _load_img函数已经解析完。

再看_convert_numpy函数,返回的dataset也就是一个字典,键是字符串,值是numpy数组。

回到init_mnist()函数里面,由print(“Creating pickle file …”)可以看到得到dataset之后,该函数进行的是创建pickle文件的操作。with open(save_file, ‘wb’) as f 这句话,意思是以二进制格式打开名字为save_file的文件只用于写入。我们的save_file = dataset_dir + “/mnist.pkl”,所以就是创建了一个pkl文件。那么写入什么呢,接下来看pickle.dump(dataset, f, -1)这句话,这句话表明,将对象dataset保存到我们的pkl文件中去,这个-1是pickle进行转换的协议版本。那么至此,init_mnist函数已经分析完,它返回一个pickle文件。

def init_mnist():download_mnist()dataset = _convert_numpy()print("Creating pickle file ...")with open(save_file, 'wb') as f:pickle.dump(dataset, f, -1)print("Done!")

接下来继续分析load_mnist函数

下面有一行,with open(save_file, ‘rb’) as f: dataset = pickle.load(f),把之前的pickle文件重构为原来的python对象,给dataset。

load_mnist的参数normalize=True,这是将输入图像正规化为0-1的值,各个像素取值在0-255之间,dataset[key] /= 255.0就变成0-1之间了。

load_mnist的参数one_hot_label如果为True的话,设置将标签保存为ont-hot表示,one-hot表示是仅正确解标签为1,其余皆为0的数组。调用了 _change_one_hot_label函数来实现。

def _change_one_hot_label(X):T = np.zeros((X.size, 10))for idx, row in enumerate(T):row[X[idx]] = 1return T

load_mnist的参数flatten设置为True,则输入图像会保存为由784个元素构成的一维数组,设置为False,则输入图像为1*28 *28的三维数组。

最后load_mnist返回字典类型的dataset。键分别是train_img、train_label、test_img、test_label,值是由后缀为.gz数据集文件转换得到的Numpy数组。

def load_mnist(normalize=True, flatten=True, one_hot_label=False):if not os.path.exists(save_file):init_mnist()with open(save_file, 'rb') as f:dataset = pickle.load(f)if normalize:for key in ('train_img', 'test_img'):dataset[key] = dataset[key].astype(np.float32)dataset[key] /= 255.0if one_hot_label:dataset['train_label'] = _change_one_hot_label(dataset['train_label'])dataset['test_label'] = _change_one_hot_label(dataset['test_label'])if not flatten:for key in ('train_img', 'test_img'):dataset[key] = dataset[key].reshape(-1, 1, 28, 28)return (dataset['train_img'], dataset['train_label']), (dataset['test_img'], dataset['test_label']) 

至此,load_mnist函数已经分析完毕,下载MNIST数据集并使用python将数据转换成NumPy数组的全部代码:

实现数据集转换的python脚本的代码

# coding: utf-8
try:import urllib.request
except ImportError:raise ImportError('You should use Python 3.x')
import os.path
import gzip
import pickle
import os
import numpy as npurl_base = 'http://yann.lecun.com/exdb/mnist/'
key_file = {'train_img':'train-images-idx3-ubyte.gz','train_label':'train-labels-idx1-ubyte.gz','test_img':'t10k-images-idx3-ubyte.gz','test_label':'t10k-labels-idx1-ubyte.gz'
}dataset_dir = os.path.dirname(os.path.abspath(__file__))
save_file = dataset_dir + "/mnist.pkl"train_num = 60000
test_num = 10000
img_dim = (1, 28, 28)
img_size = 784def _download(file_name):file_path = dataset_dir + "/" + file_nameif os.path.exists(file_path):returnprint("Downloading " + file_name + " ... ")urllib.request.urlretrieve(url_base + file_name, file_path)print("Done")def download_mnist():for v in key_file.values():_download(v)def _load_label(file_name):file_path = dataset_dir + "/" + file_nameprint("Converting " + file_name + " to NumPy Array ...")with gzip.open(file_path, 'rb') as f:labels = np.frombuffer(f.read(), np.uint8, offset=8)print("Done")return labelsdef _load_img(file_name):file_path = dataset_dir + "/" + file_nameprint("Converting " + file_name + " to NumPy Array ...")    with gzip.open(file_path, 'rb') as f:data = np.frombuffer(f.read(), np.uint8, offset=16)data = data.reshape(-1, img_size)print("Done")return datadef _convert_numpy():dataset = {}dataset['train_img'] =  _load_img(key_file['train_img'])dataset['train_label'] = _load_label(key_file['train_label'])    dataset['test_img'] = _load_img(key_file['test_img'])dataset['test_label'] = _load_label(key_file['test_label'])return datasetdef init_mnist():download_mnist()dataset = _convert_numpy()print("Creating pickle file ...")with open(save_file, 'wb') as f:pickle.dump(dataset, f, -1)print("Done!")def _change_one_hot_label(X):T = np.zeros((X.size, 10))for idx, row in enumerate(T):row[X[idx]] = 1return Tdef load_mnist(normalize=True, flatten=True, one_hot_label=False):"""读入MNIST数据集Parameters----------normalize : 将图像的像素值正规化为0.0~1.0one_hot_label : one_hot_label为True的情况下,标签作为one-hot数组返回one-hot数组是指[0,0,1,0,0,0,0,0,0,0]这样的数组flatten : 是否将图像展开为一维数组Returns-------(训练图像, 训练标签), (测试图像, 测试标签)"""if not os.path.exists(save_file):init_mnist()with open(save_file, 'rb') as f:dataset = pickle.load(f)if normalize:for key in ('train_img', 'test_img'):dataset[key] = dataset[key].astype(np.float32)dataset[key] /= 255.0if one_hot_label:dataset['train_label'] = _change_one_hot_label(dataset['train_label'])dataset['test_label'] = _change_one_hot_label(dataset['test_label'])if not flatten:for key in ('train_img', 'test_img'):dataset[key] = dataset[key].reshape(-1, 1, 28, 28)return (dataset['train_img'], dataset['train_label']), (dataset['test_img'], dataset['test_label']) if __name__ == '__main__':init_mnist()

显示MNIST图像并确认数据

首先调用前面写的load_mnist函数(x_train, t_train), (x_test, t_test) = load_mnist(flatten=True, normalize=False)得到x_train、t_train、x_test、t_test这几个字典类型的对象。

要看训练集的第一个数据,就可以通过img = x_train[0]读出来第一个图片,label = t_train[0]读出来数据集里面放的第一个标签。输出出来发现,数据集里第一个图是5 。

在这里插入图片描述

展示图片用的是img_show函数,这个函数里面用的Image.fromarray作用是将array数据转成PIL能用的数据格式,从而输出图片。

import sys, os
sys.path.append(os.pardir)  # 为了导入父目录的文件而进行的设定
import numpy as np
from dataset.mnist import load_mnist
from PIL import Imagedef img_show(img):pil_img = Image.fromarray(np.uint8(img))pil_img.show()(x_train, t_train), (x_test, t_test) = load_mnist(flatten=True, normalize=False)img = x_train[0]
label = t_train[0]
print(label)  # 5print(img.shape)  # (784,)
img = img.reshape(28, 28)  # 把图像的形状变为原来的尺寸
print(img.shape)  # (28, 28)img_show(img)

输出:

Downloading train-images-idx3-ubyte.gz ... 
Done
Downloading train-labels-idx1-ubyte.gz ... 
Done
Downloading t10k-images-idx3-ubyte.gz ... 
Done
Downloading t10k-labels-idx1-ubyte.gz ... 
Done
Converting train-images-idx3-ubyte.gz to NumPy Array ...
Done
Converting train-labels-idx1-ubyte.gz to NumPy Array ...
Done
Converting t10k-images-idx3-ubyte.gz to NumPy Array ...
Done
Converting t10k-labels-idx1-ubyte.gz to NumPy Array ...
Done
Creating pickle file ...
Done!
5
(784,)
(28, 28)Process finished with exit code 0

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/560249.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用python构建三层神经网络、softmax函数

【机器学习】使用python手写三层神经网络输入层到第一层的传递表示第一层到第二层的传递表示第二层到第三层的传递表示全过程传递表示代码输入层到第一层的传递表示 首先看输入层到第一层的第一个神经元的信号传递过程: 可以用数学式子表示第一层的第一个神经元的值…

使用python对数据集进行批处理

【机器学习】使用python对数据集进行批处理 只输入一张图像数据过程和一次性处理100张图像数据过程中,数组形状变换如下图所示: 这些数组形状可以在代码中输出出来: def get_data():(x_train, t_train), (x_test, t_test) load_mnist(norm…

损失函数、python实现均方误差、交叉熵误差函数、mini-batch的损失函数

损失函数what is 损失函数均方误差交叉熵误差计算mini-batch学习的损失函数why 损失函数what is 损失函数 神经网络学习目标是找到各层合适的权重参数w和偏置b,使得最终的输出结果能够与实际结果更加接近。那神经网络的这些权重参数是如何得到的:靠损失…

梯度、梯度法、python实现神经网络的梯度计算

【机器学习】梯度、梯度法、python实现神经网络的梯度计算一、python实现求导的代码:二、what is 梯度三、使用梯度法寻找神经网络的最优参数四、神经网络的梯度计算一、python实现求导的代码: 导数含义也就是:变量x一个微小的变化将导致f(x…

使用反向传播算法计算参数的梯度并用python实现加法和乘法节点的反向传播

使用反向传播算法计算参数的梯度并用python实现加法和乘法节点的反向传播一、what is 反向传播二、乘法节点的反向传播三、加法节点的反向传播四、加法层和乘法层混合应用一、what is 反向传播 误差反向传播法是一种高效计算权重参数的梯度的方法。所谓的反向传播,…

结合反向传播算法使用python实现神经网络的ReLU、Sigmoid、Affine、Softmax-with-Loss层

结合反向传播算法使用python实现神经网络的ReLU、Sigmoid激活函数层 这里写目录标题一、ReLU层的实现二、Sigmoid层的实现三、实现神经网络的Affine层四、Softmax-with-Loss层实现一、ReLU层的实现 正向传播时的输入大于0,则反向传播会将上游的值原封不动地传给下游…

神经网络的SGD、Momentum、AdaGrad、Adam最优化方法及其python实现

神经网络的SGD、Momentum、AdaGrad、Adam最优化方法及其python实现一、SGD二、Momentum-动量三、AdaGrad四、Adam一、SGD 右边的值更新左边的值,每次更新朝着梯度方向前进一小步。 class SGD:"""随机梯度下降法(Stochastic Gradient Des…

关于神经网络权重初始值的设置的研究

关于神经网络权重初始值的设置的研究一、权重初始值二、权重初始值会影响隐藏层的激活值分布三、Xavier初始值四、He初始值五、基于MNIST数据集的权重初始值的比较一、权重初始值 权值衰减—抑制过拟合、提高泛化能力。 所谓权值衰减,即,以减小权重参数…

使用权值衰减算法解决神经网络过拟合问题、python实现

使用权值衰减算法解决神经网络过拟合问题、python实现一、what is 过拟合二、过拟合原因三、权值衰减四、实验验证4.1制造过拟合现象4.2使用权值衰减抑制过拟合一、what is 过拟合 过拟合指只能拟合训练数据,但不能很好拟合不包含在训练数据中的其他数据的状态。 …

解决神经网络过拟合问题—Dropout方法、python实现

解决神经网络过拟合问题—Dropout方法一、what is Dropout?如何实现?二、使用和不使用Dropout的训练结果对比一、what is Dropout?如何实现? 如果网络模型复杂,L2范数权值衰减方法就难以对付过拟合。这种情况下&#…

神经网络如何调参、超参数的最优化方法、python实现

神经网络如何调参、超参数的最优化方法、python实现一、what is 超参数二、超参数优化实验一、what is 超参数 超参数是什么,其实就是,各层神经元数量、batch大小、学习率等人为设定的一些数。 数据集分为训练数据、测试数据、验证数据。 用测试数据评…

卷积神经网络的整体结构、卷积层、池化、python实现

卷积神经网络的整体结构、卷积层、池化、python实现一、整体结构二、卷积层三、池化层四、python实现卷积层、池化层一、整体结构 神经网络相邻层所有神经元之间都有连接,称为全连接。前面用Affine层实现了全连接。 举个例子 全连接神经网络结构: 卷积…

基于随机梯度下降法的手写数字识别、epoch是什么、python实现

基于随机梯度下降法的手写数字识别、epoch是什么、python实现一、普通的随机梯度下降法的手写数字识别1.1 学习流程1.2 二层神经网络类1.3 使用MNIST数据集进行学习注:关于什么是epoch二、基于误差反向传播算法求梯度的手写数字识别2.1 学习流程2.2 实现与结果分析一…

基于卷积神经网络的手写数字识别、python实现

一、CNN网络结构与构建 参数: 输入数据的维数,通道,高,长 input_dim(1, 28, 28)卷积层的超参数,filter_num:滤波器数量,filter_size:滤波器大小,stride:步幅…

基于深度学习的手写数字识别、python实现

基于深度学习的手写数字识别、python实现一、what is 深度学习二、加深层可以减少网络的参数数量三、深度学习的手写数字识别一、what is 深度学习 深度学习是加深了层的深度神经网络。 二、加深层可以减少网络的参数数量 加深层的网络可以用更少参数获得与没有加深层同等水…

二极管的结构、特性、参数、稳压管的特性和参数

二极管的结构、特性、参数、稳压管的特性和参数本文介绍的定义一、半导体类型二、PN结的结构与单向导电性三、二极管的伏安特性四、二极管的参数五、稳压管本文介绍的定义 本文介绍的定义:半导体、本征半导体、空穴、载流子、杂质半导体、N型半导体、P型半导体、PN…

双极结型三极管的结构、特性曲线、参数、lceda仿真

双极结型三极管的结构、特性、参数本文介绍的定义一、三极管结构二、三极管特性曲线三、三极管参数本文介绍的定义 硅平面管、锗合金管、发射区、基区,集电区、发射极、基极、集电极、发射结、集电结、发射、发射极电流、复合和扩散、基极电流、收集、集电极电流、…

结型场效应管的结构、特性、参数

结型场效应管的结构、特性、参数本文介绍的定义一、N沟道结型场效应管结构二、N沟道结型场效应管特性曲线本文介绍的定义 场效应管、结型场效应管、N沟道结型场效应管的结构、耗尽层、栅极、源极、漏极、N沟道结型场效应管、夹断电压、预夹断、输出特性、可变电阻区、恒流区、…

绝缘栅型场效应管的结构、特性、参数

绝缘栅型场效应管的结构、特性、参数本文介绍的定义一、N沟道增强型MOS场效应管结构二、N沟道增强型MOS场效应管特性曲线三、N沟道耗尽型MOS场效应管结构和特性曲线本文介绍的定义 绝缘栅型场效应管、N沟道增强型MOS场效应管、耗尽型场效应管、增强型场效应管、反型层、开启电…

放大电路、单管共发射极放大电路结构、工作原理、lceda仿真

放大电路、单管共发射极放大电路结构、工作原理本文介绍的定义一、放大电路基本概念二、单管共发射极放大电路本文介绍的定义 放大、实现放大作用、放大电路技术指标测量、电压放大倍数、电流放大倍数、相量表示、最大输出幅度、峰峰值、非线性失真系数、输入电阻、输出电阻、…