神经网络的SGD、Momentum、AdaGrad、Adam最优化方法及其python实现

神经网络的SGD、Momentum、AdaGrad、Adam最优化方法及其python实现

    • 一、SGD
    • 二、Momentum-动量
    • 三、AdaGrad
    • 四、Adam

一、SGD

在这里插入图片描述

右边的值更新左边的值,每次更新朝着梯度方向前进一小步。

class SGD:"""随机梯度下降法(Stochastic Gradient Descent)"""def __init__(self, lr=0.01):self.lr = lrdef update(self, params, grads):for key in params.keys():params[key] -= self.lr * grads[key] 

二、Momentum-动量

SGD实现简单,有些问题可能没有效果,比如f(x,y)=(1/20)x^ 2 +y ^2

SGD低效的根本原因:梯度的方向没有指向最小值的方向。如果函数形状非均向,如呈现延伸状,搜索路径就非常低效,有可能呈现z字形移动。

Momentum-动量方法公式:

在这里插入图片描述

v表示物体在梯度方向受的力,αv作用是让物体逐渐减速(α小于1,常数,如0.9之类的数)。

动量法的好处,x轴方向受力小,但是每一次梯度变化的方向不变,速度方向不变,一直在这个方向受力,往那个方向走的速度会加速。但是y轴受到正反方向的力,他们会抵消,让y不稳定,因此和SGD相比,能更快的向x轴方向靠近。

简的来说,SGD的话就是他y方向梯度大,步子跨的猛的话就z形了,动量的目的是梯度大的那块,迈步子时候让它考虑到上一次的步子是往哪走的。如果相反方向走的话,其实是抵消了一部分v,这样的话如果步子跨得猛,他也得少一点步子。如下图所示,对于f(x,y)=(1/20)x^ 2 +y ^2用SGD的话,m想走到y,它在y轴摇摆的厉害,但是,用动量,y轴摇摆抵消了,而且x轴速度还增加了,多好。

在这里插入图片描述

class Momentum:"""Momentum SGD"""def __init__(self, lr=0.01, momentum=0.9):self.lr = lrself.momentum = momentumself.v = Nonedef update(self, params, grads):if self.v is None:self.v = {}for key, val in params.items():                                self.v[key] = np.zeros_like(val)for key in params.keys():self.v[key] = self.momentum*self.v[key] - self.lr*grads[key] params[key] += self.v[key]

三、AdaGrad

在这里插入图片描述

h保存了梯度的平方和,圆圈就表示矩阵相乘。

由于乘上根号h分之1,参数的元素中,变动较大的元素的学习率将变小。

这是一种学习率衰减的手法,梯度下降太快了,山谷太陡峭了,那我就让你走的步子减小,这样一来,你不容易直接一步跨俩山峰(山峰是啥懂得都懂,嘿嘿)。

class AdaGrad:"""AdaGrad"""def __init__(self, lr=0.01):self.lr = lrself.h = Nonedef update(self, params, grads):if self.h is None:self.h = {}for key, val in params.items():self.h[key] = np.zeros_like(val)for key in params.keys():self.h[key] += grads[key] * grads[key]params[key] -= self.lr * grads[key] / (np.sqrt(self.h[key]) + 1e-7)

四、Adam

结合了Momentum和AdaGrad方法。

看代码去吧

很多人喜欢用Adam哦

class Adam:"""Adam (http://arxiv.org/abs/1412.6980v8)"""def __init__(self, lr=0.001, beta1=0.9, beta2=0.999):self.lr = lrself.beta1 = beta1self.beta2 = beta2self.iter = 0self.m = Noneself.v = Nonedef update(self, params, grads):if self.m is None:self.m, self.v = {}, {}for key, val in params.items():self.m[key] = np.zeros_like(val)self.v[key] = np.zeros_like(val)self.iter += 1lr_t  = self.lr * np.sqrt(1.0 - self.beta2**self.iter) / (1.0 - self.beta1**self.iter)         for key in params.keys():#self.m[key] = self.beta1*self.m[key] + (1-self.beta1)*grads[key]#self.v[key] = self.beta2*self.v[key] + (1-self.beta2)*(grads[key]**2)self.m[key] += (1 - self.beta1) * (grads[key] - self.m[key])self.v[key] += (1 - self.beta2) * (grads[key]**2 - self.v[key])params[key] -= lr_t * self.m[key] / (np.sqrt(self.v[key]) + 1e-7)#unbias_m += (1 - self.beta1) * (grads[key] - self.m[key]) # correct bias#unbisa_b += (1 - self.beta2) * (grads[key]*grads[key] - self.v[key]) # correct bias#params[key] += self.lr * unbias_m / (np.sqrt(unbisa_b) + 1e-7)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/560242.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

关于神经网络权重初始值的设置的研究

关于神经网络权重初始值的设置的研究一、权重初始值二、权重初始值会影响隐藏层的激活值分布三、Xavier初始值四、He初始值五、基于MNIST数据集的权重初始值的比较一、权重初始值 权值衰减—抑制过拟合、提高泛化能力。 所谓权值衰减,即,以减小权重参数…

使用权值衰减算法解决神经网络过拟合问题、python实现

使用权值衰减算法解决神经网络过拟合问题、python实现一、what is 过拟合二、过拟合原因三、权值衰减四、实验验证4.1制造过拟合现象4.2使用权值衰减抑制过拟合一、what is 过拟合 过拟合指只能拟合训练数据,但不能很好拟合不包含在训练数据中的其他数据的状态。 …

解决神经网络过拟合问题—Dropout方法、python实现

解决神经网络过拟合问题—Dropout方法一、what is Dropout?如何实现?二、使用和不使用Dropout的训练结果对比一、what is Dropout?如何实现? 如果网络模型复杂,L2范数权值衰减方法就难以对付过拟合。这种情况下&#…

神经网络如何调参、超参数的最优化方法、python实现

神经网络如何调参、超参数的最优化方法、python实现一、what is 超参数二、超参数优化实验一、what is 超参数 超参数是什么,其实就是,各层神经元数量、batch大小、学习率等人为设定的一些数。 数据集分为训练数据、测试数据、验证数据。 用测试数据评…

卷积神经网络的整体结构、卷积层、池化、python实现

卷积神经网络的整体结构、卷积层、池化、python实现一、整体结构二、卷积层三、池化层四、python实现卷积层、池化层一、整体结构 神经网络相邻层所有神经元之间都有连接,称为全连接。前面用Affine层实现了全连接。 举个例子 全连接神经网络结构: 卷积…

基于随机梯度下降法的手写数字识别、epoch是什么、python实现

基于随机梯度下降法的手写数字识别、epoch是什么、python实现一、普通的随机梯度下降法的手写数字识别1.1 学习流程1.2 二层神经网络类1.3 使用MNIST数据集进行学习注:关于什么是epoch二、基于误差反向传播算法求梯度的手写数字识别2.1 学习流程2.2 实现与结果分析一…

基于卷积神经网络的手写数字识别、python实现

一、CNN网络结构与构建 参数: 输入数据的维数,通道,高,长 input_dim(1, 28, 28)卷积层的超参数,filter_num:滤波器数量,filter_size:滤波器大小,stride:步幅…

基于深度学习的手写数字识别、python实现

基于深度学习的手写数字识别、python实现一、what is 深度学习二、加深层可以减少网络的参数数量三、深度学习的手写数字识别一、what is 深度学习 深度学习是加深了层的深度神经网络。 二、加深层可以减少网络的参数数量 加深层的网络可以用更少参数获得与没有加深层同等水…

二极管的结构、特性、参数、稳压管的特性和参数

二极管的结构、特性、参数、稳压管的特性和参数本文介绍的定义一、半导体类型二、PN结的结构与单向导电性三、二极管的伏安特性四、二极管的参数五、稳压管本文介绍的定义 本文介绍的定义:半导体、本征半导体、空穴、载流子、杂质半导体、N型半导体、P型半导体、PN…

双极结型三极管的结构、特性曲线、参数、lceda仿真

双极结型三极管的结构、特性、参数本文介绍的定义一、三极管结构二、三极管特性曲线三、三极管参数本文介绍的定义 硅平面管、锗合金管、发射区、基区,集电区、发射极、基极、集电极、发射结、集电结、发射、发射极电流、复合和扩散、基极电流、收集、集电极电流、…

结型场效应管的结构、特性、参数

结型场效应管的结构、特性、参数本文介绍的定义一、N沟道结型场效应管结构二、N沟道结型场效应管特性曲线本文介绍的定义 场效应管、结型场效应管、N沟道结型场效应管的结构、耗尽层、栅极、源极、漏极、N沟道结型场效应管、夹断电压、预夹断、输出特性、可变电阻区、恒流区、…

绝缘栅型场效应管的结构、特性、参数

绝缘栅型场效应管的结构、特性、参数本文介绍的定义一、N沟道增强型MOS场效应管结构二、N沟道增强型MOS场效应管特性曲线三、N沟道耗尽型MOS场效应管结构和特性曲线本文介绍的定义 绝缘栅型场效应管、N沟道增强型MOS场效应管、耗尽型场效应管、增强型场效应管、反型层、开启电…

放大电路、单管共发射极放大电路结构、工作原理、lceda仿真

放大电路、单管共发射极放大电路结构、工作原理本文介绍的定义一、放大电路基本概念二、单管共发射极放大电路本文介绍的定义 放大、实现放大作用、放大电路技术指标测量、电压放大倍数、电流放大倍数、相量表示、最大输出幅度、峰峰值、非线性失真系数、输入电阻、输出电阻、…

放大电路分析方法、图解法分析放大电路、lceda仿真

放大电路分析方法、图解法分析放大电路一、本文介绍的定义二、放大电路分析方法三、图解法一、本文介绍的定义 放大电路分析、图解法、微变等效电路法、静态分析、动态分析、直流通路、交流通路、单管共射放大电路的直流和交流通路、静态工作点、图解法分析静态、直流负载线、…

通过共现矩阵和余弦相似度实现机器对单词的认知、python实现

通过共现矩阵和余弦相似度实现机器对单词的认知、python实现本文介绍的定义:一、语料库预处理二、单词的分布式表示三、单词的相似度四、相似单词排序本文介绍的定义: 语料库、计数方法的目的、语料库预处理、单词的分布式表示、分布式假设、上下文、窗…

使用PPMI改进共现矩阵

使用PPMI改进共现矩阵 共现矩阵的元素表示两个单词同时出现的次数,这里的次数并不具备好的性质,举个例子,有短语叫the car,因为the是个常用词,如果以两个单词同时出现的次数为衡量相关性的标准,与drive 相…

基于SVD的降维优化

基于SVD的降维优化 向量降维:尽量保留数据“重要信息”的基础上减少向量维度。可以发现重要的轴(数据分布广的轴),将二维数据 表示为一维数据,用新轴上的投影值来表示各个数据点的值,示意图如下。 稀疏矩阵…

微变等效电路法分析放大电路

微变等效电路法分析放大电路本文介绍的定义一、简化的h参数微变等效电路1.静态工作点计算2.微变等效电路法估算电压放大倍数二、微变等效电路法应用本文介绍的定义 微变等效电路法、h参数微变等效电路、单管共射放大电路的微变等效电路、Rbe近似估算、微变等效电路法应用。 一…

分压式静态工作点稳定电路

分压式静态工作点稳定电路本文介绍的定义:一、静态工作点稳定问题二、分压式静态工作点稳定电路本文介绍的定义: 静态工作点稳定问题、温度对三极管参数的影响、分压式静态工作点稳定电路、电流负反馈式工作点稳定电路、旁路电容、静态分析、动态分析。…

双极型三极管共集电极、共基极放大电路

双极型三极管共集电极、共基极放大电路本文介绍的定义共集电极放大电路共基极放大电路本文介绍的定义 双极型三极管放大电路的接法、共集电极放大电路、射极跟随器、带负载能力、共基极放大电路、改善频率响应。 共集电极放大电路 接法:根据输入信号与输出信号公…