网络流专题(最大流与费用流)例题总结

文章目录

  • NC 106056 poj1459 Power Network
    • 题目大意:
    • 题解:
  • NC213817 [网络流24题]最小路径覆盖问题
    • 题目:
    • 题解:
  • 例2:NC213818 [网络流24题]魔术球问题
    • 题目:
    • 题解:
      • 方法2:
  • NC 213820 [网络流24题]最长递增子序列问题
    • 题目:
    • 题解:
  • NC19939 [CQOI2015]网络吞吐量
    • 题目:
    • 题解:
    • 代码:

NC 106056 poj1459 Power Network

题目大意:

总共有n个节点,其中有发电站np个、用户nc个和调度器n-np-nc个三种节点,每个发电站有一个最大发电量,每个用户有个最大接受电量,现在有m条有向边,边有一个最大的流量代表,最多可以流出这么多电,现在从发电站发电到用户,问最多可以发多少电
• N<=100

题解:

• 我们之前讲的网络流都是单源单汇问题,这题是多源多汇,关键在于把多源多汇问题转化为单源单汇,只要构造一个超级源点和一个超级汇点就ok了,把超级源点和各个源点之间加一条边,把各个汇点和超级汇点之间加一条边,这样就搞定了

NC213817 [网络流24题]最小路径覆盖问题

题目:

• 给定有向图G=(V,E)。设P 是G 的一个简单路(顶点不相交)的集合。如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖。P 中路径可以从V 的任何一个顶点开始,长度也是任意的,特别地,可以为0。G 的最小路径覆盖是G 的所含路径条数最少的路径覆盖。
设计一个有效算法求一个有向无环图G 的最小路径覆盖。
• 1≤n≤150,1≤m≤6000

题解:

• 每个点用一次——
• 每个点拆成出点和入点,入点向出点连容量为1的边
• 原图中存在x到y的边的话,就从x的出点向y的入点连容量为1的边
• S向每个点的入点连容量为1的边,每个点的出点向T连容量为1的边

一张图中,路径数(点不重复)=点数-点之间匹配数(连边且不重复,也就是网络最大流)。
在网络流上体现为:最小路径覆盖=点的总数-网络最大流
在这里插入图片描述

例2:NC213818 [网络流24题]魔术球问题

题目:

• 假设有n根柱子,现要按下述规则在这n根柱子中依次放入编号为1,2,3,…的球。
(1)每次只能在某根柱子的最上面放球。
(2)在同一根柱子中,任何2个相邻球的编号之和为完全平方数。
试设计一个算法,计算出在n根柱子上最多能放多少个球。例如,在4 根柱子上最多可放11 个球。
编程任务:对于给定的n,计算在n根柱子上最多能放多少个球。
• 1≤n≤55

题解:

首先思想很重要,不是明显的图论,要往图论方向靠
在这里插入图片描述

建图方式:
S与左图所有数相连,右图所有数与T相连

在这里插入图片描述
对于一个进来的编号的球x,有两个选择:
第一个选择是放在某个和他能组成平方数的球(我们起名为y)的后面
第二个选择是自己单独出来成为开头
对于第一种选择,当然要y和x连一个边
对于第二种选择,S要和x连一个边
当然我们也要让x与T连一个边
但是一个点怎么能同时连多个,显然一个点是不够用的
我们将一个点给分开,分为x和x’
x与s相连,x’与t相连
为了满足第一种情况,对于满足条件的x和y两个点,连接y和x’
这样组成的图直接跑最大流算法即可
球和柱子同时加,跑出的最大流为省掉的柱子数,如果加入一个数当前最大流没有变化,说明柱子数+1,如果最大流+1,说明可以省下一个柱子、
在这里插入图片描述

方法2:

匈牙利算法也可以做
给定了柱子数n(最小路径覆盖数)以及放球条件(建边条件),求最多有多少个球(最多有多少个点可以满足这个最小路径覆盖数)。
枚举球的数量。
每来一个球(点)m,枚举1…m-1的每个点i,若i+m满足建边条件(和为完全平方数)则按以下方式建边——
套路拆点,每个点i拆成Xi、Yi,对于一组i、m,连Xi<->Y(m+5000)双向,跑匈牙利算出最大匹配。
根据二分图相关定理:最小路径覆盖数=点数-最大匹配数。
算出当前图的最小路径覆盖k,与给定柱子数比较。
k<n,继续加球。

k=n,可能还有更大的答案,继续加球。

k>n,m-1就是答案,停止加球。

输出路径,遍历1…m-1每个X部点,向其匹配点走,直到无路可走,沿路标记为已遍历。

已遍历过的X部点不再遍历。

NC 213820 [网络流24题]最长递增子序列问题

题目:

• 给定正整数序列x1 ,… , xn。 (1)计算其最长递增子序列的长度s。 (2)计算从给定的序列中最多可取出多少个长度为s的递增子序列。
(3)如果允许在取出的序列中多次使用x1和xn,则从给定序列中最多可取出多少个长度为s
的递增子序列。
• 编程任务:设计有效算法完成(1)(2)(3)提出的计算任务。
• 1≤n≤500

题解:

参考自众多大佬题解
第一问好说,经典dp问题,
F[i],表示以第i位为开头的最长上升序列的长度
第二三问是网络流问题
因为题目要求是不下降序列,所以我们可以将不下降序列中的数字连边

建图方式:

  1. 我们先将每个数字x拆成两个x1,x2,两者连有一个容量为1的有向边,从x1到x2
  2. 建立源点S和汇点T,如果序列第x位有F[x]=K,也就是第x位为最长序列的第一个数字,那么就建立S到x1连接一条容量为1的有向边
  3. 如果F[i] = 1,从i2到T连接一个容量为1的有向边
  4. 如果i<j且A[i] < A[j]且F[i]=F[j]+1,从<i.b>到<j.a>连接一条容量为1的有向边。也就是对于一个非递减序列<a,b>,我们连接a2到b1一条有向边,容量为1
    对于第二问,我们直接求网络最大流即可
    对于第三位,我们将边<11,12>,<n1,n2>,<S,1`>,<n2,T>
    四个边的容量改成无限大,再跑网络最大流即可
    对于一组数 1 6 3 2 5
    对其建边情况如下:
    在这里插入图片描述

NC19939 [CQOI2015]网络吞吐量

题目:

• 路由是指通过计算机网络把信息从源地址传输到目的地址的活动,也是计算机网络设计中的重点和难点。网络中实现路由转发的硬件设备称为路由器。为了使数据包最快的到达目的地,路由器需要选择最优的路径转发数据包。例如在常用的路由算法OSPF(开放式最短路径优先)中,路由器会使用经典的Dijkstra算法计算最短路径,然后尽量沿最短路径转发数据包。
• 现在,若已知一个计算机网络中各路由器间的连接情况,以及各个路由器的最大吞吐量(即每秒能转发的数据包数量),假设所有数据包一定沿最短路径转发,试计算从路由器1到路由器n的网络的最大吞吐量。计算中忽略转发及传输的时间开销,不考虑链路的带宽限制,即认为数据包可以瞬间通过网络。路由器1到路由器n作为起点和终点,自身的吞吐量不用考虑,网络上也不存在将1和n直接相连的链路。
• n<=500,m<=100000

题解:

第一反应是最小费用最大流,但其实并不是
题目要求的是在最短路的基础上求最大吞吐量
若我们要走1到n的最短路,那我们只能走dis[v]=dis[u]+edge[u][v]的边
所以我们第一步就跑遍最短路,保留最短路中的边,此时边权我们就可以忽略掉了,因为之后再也用不上
题目中吞吐量的限制与平常不一样,这里不是对边而是对点,对点的话没办法直接算,我们可以将点一分为二,将n个点拆成n*2个点,然后第i个点向第i+n个点建立一个容量为A[i]的边
然后对于最短路中的边e[u][v],我们从第u+n个点向第v个点建一条容量为inf的边
从源点s向点1建一条容量为inf的边
从点2n向汇点t建立一条容量为inf的边
然后跑最大流即可
本题的特殊之处就在于先用最短路处理一下,剩下的步骤都是最大流常规操作了、

代码:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/318491.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

周期长度和(KMP)

文章目录题目描述解析问题总结代码题目描述 解析 我们可以看到 如果A是B的周期 那么B一定可以写成&#xff1a; A1A2A1 的形式 注意到&#xff1a;A1就是KMP中的公共前后缀 要使A最大&#xff0c;要使A1最短 也就是求最短公共前后缀 这怎么求呢&#xff1f; 我们注意到&#x…

计算几何基础-1

文章目录基本概念点与向量的运算精度问题线段&#xff0c;射线和直线点积&#xff1a;夹角叉积向量的极角旋转一个向量求三角形面积直线交点点到直线距离点在直线上的投影判断两条线段是否相交点与直线的位置关系点是否在直线左侧点是否在直线上点是否在线段上点与多边形的位置…

.net core i上 K8S(四).netcore程序的pod管理,重启策略与健康检查

目录1.pod管理2.重启策略3.健康检查4.进入容器正文上一章我们已经通过yaml文件将.netcore程序跑起来了&#xff0c;但还有一下细节问题可以分享给大家。1.pod管理1.1创建podkubectl create -f netcore-pod.yaml我们创建一个netcore-pod.yaml文件&#xff0c;内容如下&#xff1…

洛谷P2680:运输计划(倍增、二分、树上差分)

传送门 文章目录题目描述解析问题代码题目描述 解析 求最大值的最小值 容易想到二分 然后。。。就没有然后了。。。 看了题解 学会了一个新技能&#xff1a;树上差分 &#xff08;其实学长之前好像讲过。。。&#xff09; 一般的&#xff0c;对于一条A到B的路径&#xff0c;如…

计算几何基础-2

文章目录直线&#xff1a;图形&#xff1a;求垂足求两圆交点直线与圆交点多边形问题判断一个点是否在任意多边形内部Pick定理凸包求点集的凸包水平法&#xff1a;增量法&#xff1a;半平面半平面交求半平面交直线&#xff1a; struct Line{point p,v;Line(){}Line(point _p.po…

eShopOnContainers 看微服务 ②:配置 启动

一、什么是dockerDocker 是一个开源项目&#xff0c;通过把应用程序打包为可移植的、自给自足的容器&#xff08;可以运行在云端或本地&#xff09;的方式&#xff0c;实现应用程序的自动化部署。使用 Docker 的时候&#xff0c;需要创建一个应用或服务&#xff0c;然后把它和它…

判断整除(opj)(动态规划)

解析 与取模结合的动归&#xff0c;正常做即可 问题 眼瞎&#xff01;&#xff01;&#xff01; 这个序列的每个数都必须用到&#xff01;&#xff01;&#xff01; if(f[i-1][j]) f[i][j]1;上面这行就是不对的&#xff01;&#xff01;&#xff01; 头疼 仔细审题 opj的题…

[USACO09FEB]Revamping Trails G

题意&#xff1a; 约翰一共有 N 个牧场.由 MM 条布满尘埃的小径连接。小径可以双向通行。每天早上约翰从牧场 1 出发到牧场 N 去给奶牛检查身体。 通过每条小径都需要消耗一定的时间。约翰打算升级其中 K 条小径&#xff0c;使之成为高速公路。在高速公路上的通行几乎是瞬间完…

NET Core微服务之路:自己动手实现Rpc服务框架,基于DotEasy.Rpc服务框架的介绍和集成...

本篇内容属于非实用性&#xff08;拿来即用&#xff09;介绍&#xff0c;如对框架设计没兴趣的朋友&#xff0c;请略过。 快一个月没有写博文了&#xff0c;最近忙着两件事;一&#xff1a;阅读刘墉先生的《说话的魅力》&#xff0c;以一种微妙的&#xff0c;你我大家都会经常遇…

花店橱窗布置(洛谷P1854)(动态规划)

传送门 文章目录解析问题代码解析 一道很正常的动态规划 dp[i][j]表示到第j个花瓶放了第j朵花的dp最优值 注意&#xff1a;是严格使第i朵放在j瓶 找到最优解递归输出即可 问题 又是初始化的问题&#xff01;&#xff01;&#xff01; 一开始把dp赋值成负无穷时落掉了j0的一行…

P4009 汽车加油行驶问题

题目描述&#xff1a; 题解&#xff1a; 看了很多题解&#xff0c;无论什么解法都绕不开分层图 在本题中加满油的车每次可以移动K步&#xff0c;那么我们就可以建立一个K1层的分层图&#xff0c;表示汽车油量k的状态&#xff08;油量0…k&#xff09;&#xff0c;然后根据题目…

.net core i上 K8S(五).netcore程序的hostip模式

正文上一章讲了pod的管理&#xff0c;今天再分享一个pod的访问方式1.Pod的HostIP模式Pod的HostIP模式&#xff0c;可以通过宿主机访问pod内的服务&#xff0c;创建yaml文件如下apiVersion: v1 kind: Pod metadata: name: netcore-podlabels:app: netcorepod spec:containers: …

状态压缩:枚举子集(最优组队)(ybtoj)(动态规划)

解析 很裸的状压dp 但是直接暴力的话状态2n,枚举2n 乘在一起会T诶 怎么办呢&#xff1f; 使用下面这个循环&#xff0c;就可以保证只会枚举当前状态s的子集 for(int i(s-1)&s;i;i(i-1)&s){........ }证明 举举例子就挺明显了 为什么不重不漏呢&#xff1f; 首先i肯…

【活动(深圳)】告别2018之12.22 大湾区.NET Meet 大会 ,同时有网络直播

今年的 Connect(); 主题更加聚焦开发者工具生产力、开源&#xff0c;以及无服务器&#xff08;Serverless&#xff09;云服务。Visual Studio 2019 AI 智能加持的 IntelliCode、实时代码协作共享 Live Share&#xff0c;.NET Core 3.0的预览版本附带了大量更新&#xff0c;旨在…

最短路径(状压dp)(ybtoj)

解析 “bug总有de完的一天” 头疼 暴力写的话本题显然复杂度是假的 有一个很好的思路优化时间复杂度 先用dp[k][i]表示**从第k个关键点到任意i点的最短路 跑k遍 SPFA或迪杰斯特拉 即可 然后转移时可以只考虑关键点 使状态转移数大大降低 细节 头真疼 边界条件&#xff1a; …

P2403 [SDOI2010]所驼门王的宝藏(强连通分量)(拓扑排序)

文章目录题目描述解析代码洛谷传送门题目描述 解析 看题目要求很容易想到强连通分量缩点加拓扑dp 但是问题在于存图 第一感就是和暴力和每个点连边 但那样无论点数和边数都很爆炸 随后我们发现这个图非常稀疏 所以我们可以只连有宝藏的点 然而这样边数会被一行横门这样的数据…

Xamarin.Forms之UserDialogs 重制版本

在 forms 里面&#xff0c;目前使用比较多的弹出组件是 Acr.UserDialogs &#xff0c;但是这个组件有些小问题&#xff0c;比如 loading .hide 会同时把 toast 给一起关掉&#xff0c;android 下的 toast 希望是 安卓原生的toast 样子&#xff0c;而不是 底部弹出一个横条&…

H.Minimum-cost Flow

H.Minimum-cost Flow 题目&#xff1a; 其实就是给出每条边的单位费用&#xff0c;q次查询&#xff0c;每次查询改变所有边的容量&#xff08;所有边容量一样&#xff09;&#xff0c;问最后流出1流量的最小花费是多少&#xff1f; 题解&#xff1a; 暴力做法肯定是每次询问…

eShopOnContainers 看微服务③:Identity Service

引言通常&#xff0c;服务所公开的资源和 API 必须仅限受信任的特定用户和客户端访问。那进行 API 级别信任决策的第一步就是身份认证——确定用户身份是否可靠。在微服务场景中&#xff0c;身份认证通常统一处理。一般有两种实现形式&#xff1a;基于API 网关中心化认证&#…

P2168 [NOI2015] 荷马史诗(哈夫曼编码树)

传送门 文章目录题目描述解析细节代码题目描述 解析 其实就是构造一棵树 另所有带权点都为叶子节点 其代价为权值与深度的乘积 求最小代价及最小代价下的最小深度 可以看成一开始有n棵小树 每次把k棵合并在一起 最后合成一棵大树就行了 每次合并的代价是k棵树的权值和 看到这…