Angular4.x 安装|创建项目|目录结构|创建组件

Angular4.x 安装|创建项目|目录结构|创建组件


安装最新版本的 nodejs

node.js 官网:https://nodejs.org/zh-cn/

  

去官网下载 node.js,下一步下一步就可以了。只要 node.js 安装成功,那么 npm 也会帮你安装完成!

注意:请先在终端/控制台窗口中运行命令 node -v 和 npm -v, 来验证一下你正在运行 node 6.9.x 和 npm 3.x.x 以上的版本。 更老的版本可能会出现错误,更新的版本则没问题。

   

全局安装 Angular CLI 手脚架工具(只需安装一次)

使用 npm 命令安装

npm install -g @angular/cli

  

  如果安装失败,接着往下看!!!

安装 cnpm

 npm 可能安装失败,建议使用 npm 安装一下 cnpm 用淘宝镜像安装。https://npm.taobao.org/

npm install -g cnpm --registry=https://registry.npm.taobao.org

 使用 cnpm 命令安装

cnpm install -g @angular/cli

创建项目

打开 cmd 找到创建项目的目录

 

假如在桌面的 AngularStudy 目录下创建一个项目,先进入到目录下。

  

创建项目

ng new 项目名称  创建一个项目

ng new my-app

  

进入刚才创建的项目里面,启动服务。

cd my-app

  

npm install //安装依赖

  

ng serve --open

  

一系列操作完成之后,他会帮助我们把新创建的项目在浏览器中运行起来!

    

注意: 如果在运行 npm install 之后报错,删除项目文件夹中的整个 node_modules文件夹,然后重新运行 npm install 命令重新安装依赖,如果再不行,用 cnpm 命令安装。

导入编辑器

 我喜欢 VScode 所以导入里面很容易。

文件 -> 打开文件件 -> 选择项目文件夹,确定!

     

Angular目录结构

表 * 的注意!其他的了解就好。

Hello Angular 4.0 以及 app.module.ts、组件分析

 定义 AppModule,这个根模块会告诉 Angular 如何组装该应用。 目前,它只声明了 AppComponent。 稍后它还会声明更多组件。

   

  

自定义组件

https://github.com/angular/angular-cli

ng g component components/header

   

组件内容详解:

  

 

转载于:https://www.cnblogs.com/wjw1014/p/10345651.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/569810.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

第五届省赛(软件类)真题----Java大学B组答案及解析

第五届省赛(软件类)真题—-Java大学B组答案及解析 正则切分调和级数n的n次幂七对数字勾股定理九阶数独G将军 一、正则切分 java中提供了对正则表达式的支持。 有的时候,恰当地使用正则,可以让我们的工作事半功倍! …

第五届省赛(软件类)真题----Java大学A组答案及解析

第五届省赛(软件类)真题—-Java大学A组答案及解析 子序列最大长度莱布尼茨公式n的n次幂七对数字勾股定理九阶数独矩阵射线 一、子序列最大长度 一个串的子串是指该串的一个连续的局部。如果不要求连续,则可称为它的子序列。 比如对串&…

第六届省赛(软件类)真题----Java大学C组答案及解析

第六届省赛(软件类)真题----Java大学C组答案及解析隔行变色立方尾无穷分数循环节长度格子中输出奇妙的数字加法变乘法移动距离打印大X垒骰子 一、隔行变色 Excel表的格子很多,为了避免把某行的数据和相邻行混淆,可以采用隔行变色的…

spring_01概念及案例

1.什么是IOC?   IOC概念:inverse of Controll,控制反转,所谓控制反转,就是把创建对象和维护对象关系的权利从程序中转移到spring的容器中(applicationContext.xml),而程序本身不再维护 2.什么是di? dependency injection,依赖注入,di和IOC是一个概念,spring的设计者认为di等…

斐波那契数列(二)--矩阵优化算法

之前写了一篇从斐波那契数列分析递归与动态规划(JAVA)来优化斐波那契数列,这样可以使算法的时间复杂度从O(n^2)变到O(n),这是使用递归公式f(n)f(n-1)f(n-2)求斐波那契数列的最优算法,但是这只是一维世界下的极限。下面我们将其从一…

第六届省赛(软件类)真题----Java大学B组答案及解析

第六届省赛(软件类)真题----Java大学B组答案及解析三角形面积立方变自身三羊献瑞循环节长度九数组分数加法变乘法牌型种数饮料换购垒骰子生命之树 一、三角形面积如【图1】所示。图中的所有小方格面积都是1。那么,图中的三角形面积应该是多少…

【学习总结】GirlsInAI ML-diary day-11-while循环

【学习总结】GirlsInAI ML-diary 总 原博github链接-day11 认识while循环执行 对于while/break/continue的认识 新值替换变量 一般while语句 无限循环 & break continue 作业 1-更新变量 这一条没什么新的东西,别的语言也一样:python在赋值时&#x…

@PathVariable、@RequestParam、@RequestBody注解

讲解更加详细的参考资料 https://blog.csdn.net/u011410529/article/details/66974974 https://www.cnblogs.com/soul-wonder/p/8920553.html PathVariable注解的作用,获取请求地址中传递的参数,即:从URL模版中取值。 RequestParam 是从reque…

深入浅出讲算法思想--蛮力法思想分析及应用

蛮力法(brute force method,也称为穷举法或枚举法)是一种简单直接地解决问题的方法,常常直接基于问题的描述,所以,蛮力法也是最容易应用的方法。虽然,用蛮力法设计的算法时间特性往往也是最低的…

光耦在短距离通信中的应用

在高低压隔离系统设计中,难免会使用光耦来通信。在选择光耦器件时,需要考虑光耦允许的最大通信速率,否则在高速通信时会失败. 对于高速的光耦应用时,需要注意电流传输比率和开关速度。 参考文档《Basic Characteristics and Appli…

从NetCore报错到MySql安全

从NetCore报错到MySql安全 原文:从NetCore报错到MySql安全之前项目在测试服务器上的一些接口时不时会报出下面的错误:(采用Abp框架) "SocketException: 你的主机中的软件中止了一个已建立的连接。 STACK TRACE: at MySqlConnector.Pr…

减治法在查找算法中的应用(JAVA)--快速查找

减治法在查找算法中的应用 快速查找:选择问题是求一个n个数列表的第k个最小元素的问题,这个数k被称为顺序统计量。对于k1或kn来说,这并没有什么意义,我们通常会要找出这样的元素:该元素比列表中一半元素大&#xff0…

JavaScript中使用Json

转载于:https://www.cnblogs.com/lyonwu/p/10368989.html

Navicat Premium试用期破解方法(转)

转载网址https://blog.csdn.net/Jason_Julie/article/details/82864187 1、按步骤安装Navicat Premium,如果没有可以去官网下载:http://www.navicat.com.cn/download/navicat-premium 2、安装好后下载激活文件:https://pan.baidu.com/s/1kVgT…

减治法在生成子集问题中的应用(JAVA)--递归、二进制反射格雷码

减治法在生成组合对象问题中的应用 生成子集问题:经典的背包问题就是求解一个最优子集的问题,这里我们来讨论一个更简单的问题。对于任意一个集合来说,它都存在2^n个子集(一个集合所有的子集集合称为幂集)。 1&…

减治法解决俄式乘法问题(JAVA)

以上是在《算法设计与分析基础》一书中给出的定义。 这种算法只包括折半、加倍、相加这几个操作,在计算时,不需要用九九乘法表 。 同时,这个方法每次都会将计算的规模减少,运用了减治的思想 public class Main {public static…

减治法解决尼姆(Nim)游戏/拈游戏问题(JAVA)

尼姆游戏是一种两个人玩的回合制数学策略游戏。游戏者轮流从一堆棋子(一共有好几堆,一次只能从其中一堆拿。)(或者任何道具)中取走一个或者多个,最后不能再取的就是输家。当指定相应数量时,一堆…

Xshell报错“The remote SSH server rejected X11 forwarding request.”

xshell连接centos7,报错:“The remote SSH server rejected X11 forwarding request.” 打开文件/etc/ssh/sshd_config,修改下面的参数 X11Forwarding yes 如果有,那就不用修改 修改xshell连接属性 把勾选去掉即可! 参考&#xff…

蛮力法在求解“最近对”问题中的应用(JAVA)

最近对问题是在计算几何问题中最简单的,是指在一个包含n个点的集合中,找到距离最近的两个点,我们这里只研究二维空间中的版本,高维计算基本类似,区别只在于计算两点之间距离的公式略有不同,下面是标准的欧几…

蛮力法在求解凸包问题中的应用(JAVA)

凸包问题向来是计算几何中最重要的问题之一,许多各式各样的应用大多要么本身就是图凸包问题要么其中一部分需要按照凸包问题解决。 凸集合定义:对于平面上一个点集合,如果集合中的任意两点p和q为端点的线段都属于该集合,那么称这…