牛客寒假算法基础集训营2 A处女座的签到题

处女座的签到题

链接:https://ac.nowcoder.com/acm/contest/327/A

题目描述

平面上有n个点,问:平面上所有三角形面积第k大的三角形的面积是多少?

输入描述:

第一行T,表示样例的个数。
对于每一组样例,第一行两个整数n和k,
接下来n行,每行两个整数x,y表示点的坐标
T<=80
3<=n<=100
-109<=x,y<=109
对于每一组样例,保证任意两点不重合,且能构成的三角形的个数不小于k

输出描述:

对于每一组样例,输出第k大三角形的面积,精确到小数点后两位(四舍五入)。
示例1

输入

1
4 3
1 1
0 0
0 1
0 -1

输出

0.50

说明

样例中一共能构成3个三角形,面积分别为0.5,0.5,和1,面积第3大的为0.5
题解:
这个题很迷 用海伦公式不过,用sort排序超时。也算是新学了一招吧 还有数据太大会超double 故用long double。
计算几何中三角形四边形计算公式:https://blog.csdn.net/enjoying_science/article/details/41170505

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<cmath>
 5 #include<algorithm>
 6 using namespace std;
 7 const int maxn=1e6+10;
 8 int n,k;
 9 int casen;
10 long double e[maxn];
11 long double ans[maxn];
12 long double x[110],y[110];
13 int cmp(long double x,long double y)
14 {
15     return x>y;
16 }
17 int main()
18 {
19     scanf("%d",&casen);
20     while(casen--)
21     {
22         memset(e,0,sizeof(e));
23         memset(ans,0,sizeof(ans));
24         scanf("%d%d",&n,&k);
25         for(int i=0;i<n;i++)
26         {
27             cin>>x[i]>>y[i];              
28         }
29         int t=0;
30         for(int i=0;i<n;i++)
31         {
32             for(int j=i+1;j<n;j++)
33             {
34                 for(int k=j+1;k<n;k++)
35                 {
36                     long double a=0.5*abs(x[i]*y[j]+x[j]*y[k]+x[k]*y[i]-x[i]*y[k]-x[j]*y[i]-x[k]*y[j]);
37                  
38                     e[t++]=a;
39                 }
40             }
41         }
42         nth_element(e,e+k-1,e+t,cmp);
43        
44         printf("%.2Lf\n",e[k-1]);
45     }
46 }

 

转载于:https://www.cnblogs.com/1013star/p/10366770.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/569793.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

减治法解决约瑟夫斯问题(JAVA)

减治法在查找算法中的应用问题背景&#xff1a;据说著名犹太历史学家 Josephus有过以下的故事&#xff1a;在罗马人占领乔塔帕特后&#xff0c;39 个犹太人与Josephus及他的朋友躲到一个洞中&#xff0c;39个犹太人决定宁愿死也不要被敌人抓到&#xff0c;于是决定了一个自杀方…

从NetCore报错到MySql安全

从NetCore报错到MySql安全 原文:从NetCore报错到MySql安全之前项目在测试服务器上的一些接口时不时会报出下面的错误&#xff1a;&#xff08;采用Abp框架&#xff09; "SocketException: 你的主机中的软件中止了一个已建立的连接。 STACK TRACE: at MySqlConnector.Pr…

减治法在查找算法中的应用(JAVA)--快速查找

减治法在查找算法中的应用 快速查找&#xff1a;选择问题是求一个n个数列表的第k个最小元素的问题&#xff0c;这个数k被称为顺序统计量。对于k1或kn来说&#xff0c;这并没有什么意义&#xff0c;我们通常会要找出这样的元素&#xff1a;该元素比列表中一半元素大&#xff0…

JavaScript中使用Json

转载于:https://www.cnblogs.com/lyonwu/p/10368989.html

减治法在查找算法中的应用(JAVA)--二叉查找树的查找、插入、删除

减治法在查找算法中的应用二叉查找树的查找与插入&#xff1a; 二叉排序树或者是一棵空树&#xff0c;或者是具有下列性质的二叉树&#xff1a;&#xff08;1&#xff09;若左子树不空&#xff0c;则左子树上所有结点的值均小于或等于它的根节点的值&#xff1b; &#xff08;…

Navicat Premium试用期破解方法(转)

转载网址https://blog.csdn.net/Jason_Julie/article/details/82864187 1、按步骤安装Navicat Premium&#xff0c;如果没有可以去官网下载&#xff1a;http://www.navicat.com.cn/download/navicat-premium 2、安装好后下载激活文件&#xff1a;https://pan.baidu.com/s/1kVgT…

减治法在排序算法中的应用(JAVA)--插入排序

一、减治法在排序算法中的应用 插入排序&#xff1a;时间复杂度O(n^2)&#xff0c;虽然和选择、冒泡在最坏的情况下时间复杂度相同&#xff0c;但是插排平均性能在比自身的最差性能快一倍&#xff0c;所以相比选择、冒泡来说&#xff0c;插排要领先于二者。 public class Main…

减治法在求解拓扑排序问题中的应用(JAVA)--有向无环图

减治法在求解拓扑排序问题中的应用 拓扑排序&#xff1a;对于一个有向无环图来说&#xff0c;如果我们能够按照次序列出顶点&#xff0c;使得对于每条边来说&#xff0c;边的起始顶点总是排在边的结束顶点之前&#xff0c;那么这个过程就称为拓扑排序&#xff0c;拓扑排序有解…

Java中string.equalsIgnoreCase(0)与0.equalsIgnoreCase(string)的区别:

string.equalsIgnoreCase("0")&#xff1a;如果string为null,会抛出java.lang.NullPointerException异常。 "0".equalsIgnoreCase(string)&#xff1a;即使string为null也不会抛出异常。 所以一般如果判断一个字符串与一个常量是否相等的时候&#xff0c;应…

减治法在生成全排列中的应用(JAVA)--回溯、Johnson-Trotter算法、自字典序

减治法在生成组合对象问题中的应用 在深入浅出讲算法思想--蛮力法思想分析及应用这篇文章的最优解问题中中已经初步讲解了这类应用&#xff0c;下面我们将使用减治法再次思考这类问题。 1、全排列问题&#xff0c;在数学中求解一个n个数组合的全排列问题会产生n&#xff01;…

减治法在生成子集问题中的应用(JAVA)--递归、二进制反射格雷码

减治法在生成组合对象问题中的应用 生成子集问题&#xff1a;经典的背包问题就是求解一个最优子集的问题&#xff0c;这里我们来讨论一个更简单的问题。对于任意一个集合来说&#xff0c;它都存在2^n个子集&#xff08;一个集合所有的子集集合称为幂集&#xff09;。 1&…

【第九课】MriaDB密码重置和慢查询日志

目录 1、如何进行修改MariaDB的密码2、Mariadb的慢查询日志1、如何进行修改MariaDB的密码 记得root密码的修改方式&#xff1a; [rootlocalhost ~]# mysqladmin -uroot -p123456 password "123123" [rootlocalhost ~]# mysql -uroot -p Enter password: ERROR 1045 …

减治法解决俄式乘法问题(JAVA)

以上是在《算法设计与分析基础》一书中给出的定义。 这种算法只包括折半、加倍、相加这几个操作&#xff0c;在计算时&#xff0c;不需要用九九乘法表 。 同时&#xff0c;这个方法每次都会将计算的规模减少&#xff0c;运用了减治的思想 public class Main {public static…

1.需要对txt存放的测试数据做去重处理,代码如下

采用集合去重&#xff0c;在新文件里逐行写入&#xff0c;达成目的 old_file "D:/testdata/memberId.txt" #old result_file "D:/testdata/memberId_new.txt" #new lines_seen set() out_file open(result_file, "w") f open(old_file, &q…

减治法解决尼姆(Nim)游戏/拈游戏问题(JAVA)

尼姆游戏是一种两个人玩的回合制数学策略游戏。游戏者轮流从一堆棋子&#xff08;一共有好几堆&#xff0c;一次只能从其中一堆拿。&#xff09;&#xff08;或者任何道具&#xff09;中取走一个或者多个&#xff0c;最后不能再取的就是输家。当指定相应数量时&#xff0c;一堆…

jquery中$(document).ready()和window.onload的区别

在Jquery里面&#xff0c;我们可以看到两种写法:$(function(){}) 和$(document).ready(function(){}) 这两个方法的效果都是一样的&#xff0c;都是在dom文档树加载完之后执行一个函数&#xff08;注意&#xff0c;这里面的文档树加载完不代表全部文件加载完&#xff09;。 $(d…

蛮力法在排序算法中的应用(JAVA)--选择排序、冒泡排序

蛮力法在排序算法中的应用 对于一个排序问题&#xff0c;我们能想到的最简单的排序方法就是选择和冒泡 1、选择排序&#xff1a;时间复杂度O(n^2) public class Main {public static void main(String[] args) {int[] a {89, 45, 68, 90, 29, 34, 17};int min;for (int i 0…

PyCherm的常用快捷键总结

、Ctrl Enter&#xff1a;在下方新建行但不移动光标&#xff1b; 2、Shift Enter&#xff1a;在下方新建行并移到新行行首&#xff1b; 3、Ctrl /&#xff1a;注释(取消注释)选择的行&#xff1b; 4、Ctrl Alt L&#xff1a;格式化代码(与QQ锁定热键冲突&#xff0c;关闭Q…

蛮力法在查找算法中的应用(JAVA)--顺序查找

蛮力法在查找算法中的应用 对于查找算法来说&#xff0c;最简单的一个思路就是逐个匹配&#xff0c;直到找到目标元素 顺序查找&#xff1a; public class Main {public static void main(String[] args) {int[] a {89, 45, 68, 90, 29, 34, 17, 0};int k 45;int i 0;a[a.…

Xshell报错“The remote SSH server rejected X11 forwarding request.”

xshell连接centos7&#xff0c;报错&#xff1a;“The remote SSH server rejected X11 forwarding request.” 打开文件/etc/ssh/sshd_config,修改下面的参数 X11Forwarding yes 如果有&#xff0c;那就不用修改 修改xshell连接属性 把勾选去掉即可&#xff01; 参考&#xff…