Python数模笔记-模拟退火算法(4)旅行商问题


1、旅行商问题(Travelling salesman problem, TSP)

旅行商问题是经典的组合优化问题,要求找到遍历所有城市且每个城市只访问一次的最短旅行路线,即对给定的正权完全图求其总权重最小的Hamilton回路:设有 n个城市和距离矩阵 D=[dij],其中dij表示城市i到城市j的距离(i,j = 1,2 … n),则问题是要找出遍访每个城市恰好一次的一条回路并使其路径长度为最短。旅行商问题属于NP完全问题,其全局优化解的计算量以问题规模的阶乘关系增长。旅行商问题不仅作为一类典型的组合优化问题经常被用作算法研究和比较的案例,许多实际应用问题如路径规划、交通物流、网络管理也可转化为旅行商问题。
  目前,旅行商问题的研究主要集中于探索和发展各种高效近似最优解的优化方法,包括基于问题特征信息(如城市位置、距离、角度等)构造的各种启发式搜索算法,以及通过模拟或解释自然规律而发展的模拟退火算法、遗传算法、蚁群算法、神经网络算法等智能优化算法或将二者相结合的混合算法。
  模拟退火算法不仅可以解决连续函数优化问题,KIRKPATRICK在1983年成功将其应用于求解组合优化问题。模拟退火算法现已成为求解旅行商问题的常用方法,通常采用反序、移位和交换等操作算子产生新解。

欢迎关注 Youcans 原创系列,每周更新数模笔记

Python数模笔记-PuLP库
Python数模笔记-StatsModels统计回归
Python数模笔记-Sklearn
Python数模笔记-NetworkX
Python数模笔记-模拟退火算法


2、模拟退火算法求解旅行商问题

模拟退火算法要从当前解的邻域中产生新的候选解,解的表达形式和邻域结构对算法收敛非常重要。组合优化问题不同于函数优化,其自变量不是连续变化的,目标函数不仅依赖于自变量的数值,而且与变量的排列次序有关。极端地,旅行商问题的路径长度仅取决于排列次序,因此常用城市编号的序列来表示解。
  新解的产生机制是在当前解序列的基础上进行变换操作,随机改变序列中某些点的排列次序,常见的基本变换操作有交换算子(Swap Operator)、反序算子(Inversion Operator)、移位算子(Move Operator)等。交换算子将当前路径 S_now 中的第 i 个城市 Ci 与第 j 个城市 Cj 的位置交换;反序算子也称2-opt,将当前路径 S_now 中从第 i 个城市 Ci 到第 j 个城市 Cj 之间的城市排列顺序反向翻转;移位算子相当于 Or-opt 操作t,将当前路径 S_now 中的第 i 个城市 Ci 移动到第 j 个城市 Cj 之后的位置。


3、 程序说明

下段给出了模拟退火算法求解旅行商问题的 Python程序。对于程序中的一些细节处理,说明如下:

  1. 数据的获取。为了避免让读者下载数据文件,程序中采用直接赋值方式读取旅行城市位置的坐标。实际上,通常是使用数据文件给出城市位置的参数,程序中已经给出了读取 TSPLib(旅行商问题国际标准数据集)的子程序和调用方法。
  2. 城市间距的计算。按照 TSPLib 的处理规范,一是城市间距按欧式距离计算,不要说地球是圆的要算球面间距了;二是对计算的城市间距离取整(四舍五入),而不是用实数表示城市间距离,这会导致一些优化结果的差异。
  3. 新路径的产生。为便于理解,本程序只给出了交换算子(Swap Operator)的子程序。交换操作非常容易理解,但实际上优化效率和效果并不好,反序操作的性能显著优于交换算子。

4、模拟退火算法求解旅行商问题 Python 程序

# 模拟退火算法求解旅行商问题 Python程序
# Program: SimulatedAnnealing_v6.py
# Purpose: Simulated annealing algorithm for traveling salesman problem
# v1.0: = 关注 Youcans,分享原创系列 https://blog.csdn.net/youcans =
#   模拟退火求解旅行商问题(TSP)基本算法
# Copyright 2021 YouCans, XUPT
# Crated:2021-05-01#  -*- coding: utf-8 -*-
import math                         # 导入模块 math
import random                       # 导入模块 random
import pandas as pd                 # 导入模块 pandas 并简写成 pd
import numpy as np                  # 导入模块 numpy 并简写成 np YouCans
import matplotlib.pyplot as plt     # 导入模块 matplotlib.pyplot 并简写成 pltnp.set_printoptions(precision=4)
pd.set_option('display.max_rows', 20)
pd.set_option('expand_frame_repr', False)
pd.options.display.float_format = '{:,.2f}'.format# 子程序:初始化模拟退火算法的控制参数
def initParameter():# custom function initParameter():# Initial parameter for simulated annealing algorithmtInitial = 100.0                # 设定初始退火温度(initial temperature)tFinal  = 1                     # 设定终止退火温度(stop temperature)nMarkov = 1000                # Markov链长度,也即内循环运行次数alfa    = 0.98                 # 设定降温参数,T(k)=alfa*T(k-1)return tInitial,tFinal,alfa,nMarkov# 子程序:读取TSPLib数据
def read_TSPLib(fileName):# custom function read_TSPLib(fileName)# Read datafile *.dat from TSPlib# return coordinates of each city by YouCans, XUPTres = []with open(fileName, 'r') as fid:for item in fid:if len(item.strip())!=0:res.append(item.split())loadData = np.array(res).astype('int')      # 数据格式:i Xi Yicoordinates = loadData[:,1::]return coordinates# 子程序:计算各城市间的距离,得到距离矩阵
def getDistMat(nCities, coordinates):# custom function getDistMat(nCities, coordinates):# computer distance between each 2 CitiesdistMat = np.zeros((nCities,nCities))       # 初始化距离矩阵for i in range(nCities):for j in range(i,nCities):# np.linalg.norm 求向量的范数(默认求 二范数),得到 i、j 间的距离distMat[i][j] = distMat[j][i] = round(np.linalg.norm(coordinates[i]-coordinates[j]))return distMat                              # 城市间距离取整(四舍五入)# 子程序:计算 TSP 路径长度
def calTourMileage(tourGiven, nCities, distMat):# custom function caltourMileage(nCities, tour, distMat):# to compute mileage of the given tourmileageTour = distMat[tourGiven[nCities-1], tourGiven[0]]   # dist((n-1),0)for i in range(nCities-1):                                  # dist(0,1),...dist((n-2)(n-1))mileageTour += distMat[tourGiven[i], tourGiven[i+1]]return round(mileageTour)                     # 路径总长度取整(四舍五入)# 子程序:绘制 TSP 路径图
def plot_tour(tour, value, coordinates):# custom function plot_tour(tour, nCities, coordinates)num = len(tour)x0, y0 = coordinates[tour[num - 1]]x1, y1 = coordinates[tour[0]]plt.scatter(int(x0), int(y0), s=15, c='r')      # 绘制城市坐标点 C(n-1)plt.plot([x1, x0], [y1, y0], c='b')             # 绘制旅行路径 C(n-1)~C(0)for i in range(num - 1):x0, y0 = coordinates[tour[i]]x1, y1 = coordinates[tour[i + 1]]plt.scatter(int(x0), int(y0), s=15, c='r')  # 绘制城市坐标点 C(i)plt.plot([x1, x0], [y1, y0], c='b')         # 绘制旅行路径 C(i)~C(i+1)plt.xlabel("Total mileage of the tour:{:.1f}".format(value))plt.title("Optimization tour of TSP{:d}".format(num))  # 设置图形标题plt.show()# 子程序:交换操作算子
def mutateSwap(tourGiven, nCities):# custom function mutateSwap(nCities, tourNow)# produce a mutation tour with 2-Swap operator# swap the position of two Cities in the given tour# 在 [0,n) 产生 2个不相等的随机整数 i,ji = np.random.randint(nCities)          # 产生第一个 [0,n) 区间内的随机整数while True:j = np.random.randint(nCities)      # 产生一个 [0,n) 区间内的随机整数if i!=j: break                      # 保证 i, j 不相等tourSwap = tourGiven.copy()             # 将给定路径复制给新路径 tourSwaptourSwap[i],tourSwap[j] = tourGiven[j],tourGiven[i] # 交换 城市 i 和 j 的位置————简洁的实现方法return tourSwapdef main():# 主程序 = 关注 Youcans,分享原创系列 https://blog.csdn.net/youcans =# # 读取旅行城市位置的坐标coordinates = np.array([[565.0, 575.0], [25.0, 185.0], [345.0, 750.0], [945.0, 685.0], [845.0, 655.0],[880.0, 660.0], [25.0, 230.0], [525.0, 1000.0], [580.0, 1175.0], [650.0, 1130.0],[1605.0, 620.0], [1220.0, 580.0], [1465.0, 200.0], [1530.0, 5.0], [845.0, 680.0],[725.0, 370.0], [145.0, 665.0], [415.0, 635.0], [510.0, 875.0], [560.0, 365.0],[300.0, 465.0], [520.0, 585.0], [480.0, 415.0], [835.0, 625.0], [975.0, 580.0],[1215.0, 245.0], [1320.0, 315.0], [1250.0, 400.0], [660.0, 180.0], [410.0, 250.0],[420.0, 555.0], [575.0, 665.0], [1150.0, 1160.0], [700.0, 580.0], [685.0, 595.0],[685.0, 610.0], [770.0, 610.0], [795.0, 645.0], [720.0, 635.0], [760.0, 650.0],[475.0, 960.0], [95.0, 260.0], [875.0, 920.0], [700.0, 500.0], [555.0, 815.0],[830.0, 485.0], [1170.0, 65.0], [830.0, 610.0], [605.0, 625.0], [595.0, 360.0],[1340.0, 725.0], [1740.0, 245.0]])# fileName = "../data/eil76.dat"                      # 数据文件的地址和文件名# coordinates = read_TSPLib(fileName)                 # 调用子程序,读取城市坐标数据文件# 模拟退火算法参数设置tInitial,tFinal,alfa,nMarkov = initParameter()      # 调用子程序,获得设置参数nCities = coordinates.shape[0]              # 根据输入的城市坐标 获得城市数量 nCitiesdistMat = getDistMat(nCities, coordinates)  # 调用子程序,计算城市间距离矩阵nMarkov = nCities                           # Markov链 的初值设置tNow    = tInitial                          # 初始化 当前温度(current temperature)# 初始化准备tourNow   = np.arange(nCities)   # 产生初始路径,返回一个初值为0、步长为1、长度为n 的排列valueNow  = calTourMileage(tourNow,nCities,distMat) # 计算当前路径的总长度 valueNowtourBest  = tourNow.copy()                          # 初始化最优路径,复制 tourNowvalueBest = valueNow                                # 初始化最优路径的总长度,复制 valueNowrecordBest = []                                     # 初始化 最优路径记录表recordNow  = []                                     # 初始化 最优路径记录表# 开始模拟退火优化过程iter = 0                        # 外循环迭代次数计数器while tNow >= tFinal:           # 外循环,直到当前温度达到终止温度时结束# 在当前温度下,进行充分次数(nMarkov)的状态转移以达到热平衡for k in range(nMarkov):    # 内循环,循环次数为Markov链长度# 产生新解:tourNew = mutateSwap(tourNow, nCities)      # 通过 交换操作 产生新路径valueNew = calTourMileage(tourNew,nCities,distMat) # 计算当前路径的总长度deltaE = valueNew - valueNow# 接受判别:按照 Metropolis 准则决定是否接受新解if deltaE < 0:                          # 更优解:如果新解的目标函数好于当前解,则接受新解accept = Trueif valueNew < valueBest:            # 如果新解的目标函数好于最优解,则将新解保存为最优解tourBest[:] = tourNew[:]valueBest = valueNewelse:                                   # 容忍解:如果新解的目标函数比当前解差,则以一定概率接受新解pAccept = math.exp(-deltaE/tNow)    # 计算容忍解的状态迁移概率if pAccept > random.random():accept = Trueelse:accept = False# 保存新解if accept == True:                      # 如果接受新解,则将新解保存为当前解tourNow[:] = tourNew[:]valueNow = valueNew# 平移当前路径,以解决变换操作避开 0,(n-1)所带来的问题,并未实质性改变当前路径。tourNow = np.roll(tourNow,2)                # 循环移位函数,沿指定轴滚动数组元素# 完成当前温度的搜索,保存数据和输出recordBest.append(valueBest)                # 将本次温度下的最优路径长度追加到 最优路径记录表recordNow.append(valueNow)                  # 将当前路径长度追加到 当前路径记录表print('i:{}, t(i):{:.2f}, valueNow:{:.1f}, valueBest:{:.1f}'.format(iter,tNow,valueNow,valueBest))# 缓慢降温至新的温度,iter = iter + 1tNow = tNow * alfa                              # 指数降温曲线:T(k)=alfa*T(k-1)# 结束模拟退火过程# 图形化显示优化结果figure1 = plt.figure()     # 创建图形窗口 1plot_tour(tourBest, valueBest, coordinates)figure2 = plt.figure()     # 创建图形窗口 2plt.title("Optimization result of TSP{:d}".format(nCities)) # 设置图形标题plt.plot(np.array(recordBest),'b-', label='Best')           # 绘制 recordBest曲线plt.plot(np.array(recordNow),'g-', label='Now')             # 绘制 recordNow曲线plt.xlabel("iter")                                          # 设置 x轴标注plt.ylabel("mileage of tour")                               # 设置 y轴标注plt.legend()                                                # 显示图例plt.show()print("Tour verification successful!")print("Best tour: \n", tourBest)print("Best value: {:.1f}".format(valueBest))exit()# = 关注 Youcans,分享原创系列 https://blog.csdn.net/youcans =
if __name__ == '__main__':main()

5、运行结果

程序的运行结果只供参考,显然这并不是最优结果。

Tour verification successful!
Best tour: [18  7 40  2 16 17 31 38 39 36 24 27 26 11 50  3  5  4 23 47 37 14 42  98 32 10 51 13 12 25 46 28 29  1  6 41 20 30 21  0 48 35 34 33 43 45 1549 19 22 44]
Best value: 9544.0

在这里插入图片描述

= 关注 Youcans,分享原创系列 https://blog.csdn.net/youcans =
版权说明:
原创作品
Copyright 2021 YouCans, XUPT
Crated:2021-05-04

关注 Youcans,分享原创系列 https://blog.csdn.net/youcans

Python数模笔记-PuLP库(1)线性规划入门
Python数模笔记-PuLP库(2)线性规划进阶
Python数模笔记-PuLP库(3)线性规划实例
Python数模笔记-StatsModels 统计回归(1)简介
Python数模笔记-StatsModels 统计回归(2)线性回归
Python数模笔记-StatsModels 统计回归(3)模型数据的准备
Python数模笔记-StatsModels 统计回归(4)可视化
Python数模笔记-Sklearn (1)介绍
Python数模笔记-Sklearn (2)聚类分析
Python数模笔记-Sklearn (3)主成分分析
Python数模笔记-Sklearn (4)线性回归
Python数模笔记-Sklearn (5)支持向量机
Python数模笔记-模拟退火算法(1)多变量函数优化
Python数模笔记-模拟退火算法(2)约束条件的处理
Python数模笔记-模拟退火算法(3)整数规划问题
Python数模笔记-模拟退火算法(4)旅行商问题

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/566176.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

神经网络概述

神经网络概述 以监督学习为例&#xff0c;假设我们有训练样本集 &#xff0c;那么神经网络算法能够提供一种复杂且非线性的假设模型 &#xff0c;它具有参数 &#xff0c;可以以此参数来拟合我们的数据。 为了描述神经网络&#xff0c;我们先从最简单的神经网络讲起&#x…

Python数模笔记-StatsModels 统计回归(2)线性回归

1、背景知识 1.1 插值、拟合、回归和预测 插值、拟合、回归和预测&#xff0c;都是数学建模中经常提到的概念&#xff0c;而且经常会被混为一谈。 插值&#xff0c;是在离散数据的基础上补插连续函数&#xff0c;使得这条连续曲线通过全部给定的离散数据点。 插值是离散函数…

Python数模笔记-StatsModels 统计回归(3)模型数据的准备

1、读取数据文件 回归分析问题所用的数据都是保存在数据文件中的&#xff0c;首先就要从数据文件读取数据。 数据文件的格式很多&#xff0c;最常用的是 .csv&#xff0c;.xls 和 .txt 文件&#xff0c;以及 sql 数据库文件的读取 。 欢迎关注 Youcans 原创系列&#xff0c;每…

神经网络反向传导算法

假设我们有一个固定样本集 &#xff0c;它包含 个样例。我们可以用批量梯度下降法来求解神经网络。具体来讲&#xff0c;对于单个样例 &#xff0c;其代价函数为&#xff1a; 这是一个&#xff08;二分之一的&#xff09;方差代价函数。给定一个包含 个样例的数据集&#xff…

Python数模笔记-StatsModels 统计回归(4)可视化

1、如何认识可视化&#xff1f; 图形总是比数据更加醒目、直观。解决统计回归问题&#xff0c;无论在分析问题的过程中&#xff0c;还是在结果的呈现和发表时&#xff0c;都需要可视化工具的帮助和支持。  欢迎关注 Youcans 原创系列&#xff0c;每周更新数模笔记 Python数…

梯度检验与高级优化

众所周知&#xff0c;反向传播算法很难调试得到正确结果&#xff0c;尤其是当实现程序存在很多难于发现的bug时。举例来说&#xff0c;索引的缺位错误&#xff08;off-by-one error&#xff09;会导致只有部分层的权重得到训练&#xff0c;再比如忘记计算偏置项。这些错误会使你…

Python数模笔记-Sklearn (1)介绍

1、SKlearn 是什么 Sklearn&#xff08;全称 SciKit-Learn&#xff09;&#xff0c;是基于 Python 语言的机器学习工具包。 Sklearn 主要用Python编写&#xff0c;建立在 Numpy、Scipy、Pandas 和 Matplotlib 的基础上&#xff0c;也用 Cython编写了一些核心算法来提高性能。…

自编码算法与稀疏性

目前为止&#xff0c;我们已经讨论了神经网络在有监督学习中的应用。在有监督学习中&#xff0c;训练样本是有类别标签的。现在假设我们只有一个没有带类别标签的训练样本集合 &#xff0c;其中 。自编码神经网络是一种无监督学习算法&#xff0c;它使用了反向传播算法&#…

Python数模笔记-Sklearn(2)聚类分析

1、分类的分类 分类的分类&#xff1f;没错&#xff0c;分类也有不同的种类&#xff0c;而且在数学建模、机器学习领域常常被混淆。 首先我们谈谈有监督学习&#xff08;Supervised learning&#xff09;和无监督学习&#xff08;Unsupervised learning&#xff09;&#xff…

可视化自编码器训练结果

训练完&#xff08;稀疏&#xff09;自编码器&#xff0c;我们还想把这自编码器学到的函数可视化出来&#xff0c;好弄明白它到底学到了什么。我们以在1010图像&#xff08;即n100&#xff09;上训练自编码器为例。在该自编码器中&#xff0c;每个隐藏单元i对如下关于输入的函数…

Python数模笔记-Sklearn(3)主成分分析

主成分分析&#xff08;Principal Components Analysis&#xff0c;PCA&#xff09;是一种数据降维技术&#xff0c;通过正交变换将一组相关性高的变量转换为较少的彼此独立、互不相关的变量&#xff0c;从而减少数据的维数。 1、数据降维 1.1 为什么要进行数据降维&#xff1…

稀疏自编码器一览表

下面是我们在推导sparse autoencoder时使用的符号一览表&#xff1a; 符号含义训练样本的输入特征&#xff0c;.输出值/目标值. 这里 可以是向量. 在autoencoder中&#xff0c;.第 个训练样本输入为 时的假设输出&#xff0c;其中包含参数 . 该输出应当与目标值 具有相同的…

Python数模笔记-Sklearn(4)线性回归

1、什么是线性回归&#xff1f; 回归分析&#xff08;Regression analysis)是一种统计分析方法&#xff0c;研究自变量和因变量之间的定量关系。回归分析不仅包括建立数学模型并估计模型参数&#xff0c;检验数学模型的可信度&#xff0c;也包括利用建立的模型和估计的模型参数…

Python数模笔记-Sklearn(5)支持向量机

支持向量机&#xff08;Support vector machine, SVM&#xff09;是一种二分类模型&#xff0c;是按有监督学习方式对数据进行二元分类的广义线性分类器。 支持向量机经常应用于模式识别问题&#xff0c;如人像识别、文本分类、手写识别、生物信息识别等领域。 1、支持向量机&…

矢量化编程

当使用学习算法时&#xff0c;一段更快的代码通常意味着项目进展更快。例如&#xff0c;如果你的学习算法需要花费20分钟运行完成&#xff0c;这意味着你每个小时能“尝试”3个新主意。但是假如你的程序需要20个小时来运行&#xff0c;这意味着你一天只能“尝试”一个新主意&am…

Python数模笔记-NetworkX(1)图的操作

1、NetworkX 图论与网络工具包 NetworkX 是基于 Python 语言的图论与复杂网络工具包&#xff0c;用于创建、操作和研究复杂网络的结构、动力学和功能。 NetworkX 可以以标准和非标准的数据格式描述图与网络&#xff0c;生成图与网络&#xff0c;分析网络结构&#xff0c;构建…

逻辑回归的向量化实现样例

逻辑回归的向量化实现样例 我们想用批量梯度上升法对logistic回归分析模型进行训练&#xff0c;其模型如下&#xff1a; 让我们遵从公开课程视频与CS229教学讲义的符号规范&#xff0c;设 &#xff0c;于是 &#xff0c;&#xff0c; 为截距。假设我们有m个训练样本{(, ) ,...…

Python数模笔记-NetworkX(2)最短路径

1、最短路径问题的常用算法 最短路径问题是图论研究中的经典算法问题&#xff0c;用于计算图中一个顶点到另一个顶点的最短路径。 欢迎关注 Youcans 原创系列&#xff0c;每周更新数模笔记 Python数模笔记-PuLP库 Python数模笔记-StatsModels统计回归 Python数模笔记-Sklearn…

神经网络向量化

神经网络向量化 在本节&#xff0c;我们将引入神经网络的向量化版本。在前面关于神经网络介绍的章节中&#xff0c;我们已经给出了一个部分向量化的实现&#xff0c;它在一次输入一个训练样本时是非常有效率的。下边我们看看如何实现同时处理多个训练样本的算法。具体来讲&…