可视化自编码器训练结果

训练完(稀疏)自编码器,我们还想把这自编码器学到的函数可视化出来,好弄明白它到底学到了什么。我们以在10×10图像(即n=100)上训练自编码器为例。在该自编码器中,每个隐藏单元i对如下关于输入的函数进行计算:

\begin{align}a^{(2)}_i = f\left(\sum_{j=1}^{100} W^{(1)}_{ij} x_j  + b^{(1)}_i \right).\end{align}

我们将要可视化的函数,就是上面这个以2D图像为输入、并由隐藏单元i计算出来的函数。它是依赖于参数\textstyle W^{(1)}_{ij}的(暂时忽略偏置项bi)。需要注意的是,\textstyle a^{(2)}_i可看作输入\textstyle x的非线性特征。不过还有个问题:什么样的输入图像\textstyle x可让\textstyle a^{(2)}_i得到最大程度的激励?(通俗一点说,隐藏单元\textstyle i要找个什么样的特征?)。这里我们必须给\textstyle x加约束,否则会得到平凡解。若假设输入有范数约束\textstyle ||x||^2 = \sum_{i=1}^{100} x_i^2 \leq 1,则可证(请读者自行推导)令隐藏单元\textstyle i得到最大激励的输入应由下面公式计算的像素\textstyle x_j给出(共需计算100个像素,j=1,…,100):

\begin{align}x_j = \frac{W^{(1)}_{ij}}{\sqrt{\sum_{j=1}^{100} (W^{(1)}_{ij})^2}}.\end{align}

当我们用上式算出各像素的值、把它们组成一幅图像、并将图像呈现在我们面前之时,隐藏单元\textstyle i所追寻特征的真正含义也渐渐明朗起来。

假如我们训练的自编码器有100个隐藏单元,可视化结果就会包含100幅这样的图像——每个隐藏单元都对应一幅图像。审视这100幅图像,我们可以试着体会这些隐藏单元学出来的整体效果是什么样的。


当我们对稀疏自编码器(100个隐藏单元,在10X10像素的输入上训练 )进行上述可视化处理之后,结果如下所示:

ExampleSparseAutoencoderWeights.png

上图的每个小方块都给出了一个(带有有界范数 的)输入图像\textstyle x,它可使这100个隐藏单元中的某一个获得最大激励。我们可以看到,不同的隐藏单元学会了在图像的不同位置和方向进行边缘检测。

显而易见,这些特征对物体识别等计算机视觉任务是十分有用的。若将其用于其他输入域(如音频),该算法也可学到对这些输入域有用的表示或特征。


中英文对照

可视化 Visualizing
自编码器 Autoencoder
隐藏单元 hidden unit
非线性特征 non-linear feature
激励 activate
平凡解 trivial answer
范数约束 norm constrained
稀疏自编码器 sparse autoencoder
有界范数 norm bounded
输入域 input domains

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/566164.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python数模笔记-Sklearn(3)主成分分析

主成分分析(Principal Components Analysis,PCA)是一种数据降维技术,通过正交变换将一组相关性高的变量转换为较少的彼此独立、互不相关的变量,从而减少数据的维数。 1、数据降维 1.1 为什么要进行数据降维&#xff1…

稀疏自编码器一览表

下面是我们在推导sparse autoencoder时使用的符号一览表: 符号含义训练样本的输入特征,.输出值/目标值. 这里 可以是向量. 在autoencoder中,.第 个训练样本输入为 时的假设输出,其中包含参数 . 该输出应当与目标值 具有相同的…

Python数模笔记-Sklearn(4)线性回归

1、什么是线性回归? 回归分析(Regression analysis)是一种统计分析方法,研究自变量和因变量之间的定量关系。回归分析不仅包括建立数学模型并估计模型参数,检验数学模型的可信度,也包括利用建立的模型和估计的模型参数…

Python数模笔记-Sklearn(5)支持向量机

支持向量机(Support vector machine, SVM)是一种二分类模型,是按有监督学习方式对数据进行二元分类的广义线性分类器。 支持向量机经常应用于模式识别问题,如人像识别、文本分类、手写识别、生物信息识别等领域。 1、支持向量机&…

矢量化编程

当使用学习算法时,一段更快的代码通常意味着项目进展更快。例如,如果你的学习算法需要花费20分钟运行完成,这意味着你每个小时能“尝试”3个新主意。但是假如你的程序需要20个小时来运行,这意味着你一天只能“尝试”一个新主意&am…

Python数模笔记-NetworkX(1)图的操作

1、NetworkX 图论与网络工具包 NetworkX 是基于 Python 语言的图论与复杂网络工具包,用于创建、操作和研究复杂网络的结构、动力学和功能。 NetworkX 可以以标准和非标准的数据格式描述图与网络,生成图与网络,分析网络结构,构建…

逻辑回归的向量化实现样例

逻辑回归的向量化实现样例 我们想用批量梯度上升法对logistic回归分析模型进行训练,其模型如下: 让我们遵从公开课程视频与CS229教学讲义的符号规范,设 ,于是 ,, 为截距。假设我们有m个训练样本{(, ) ,...…

Python数模笔记-NetworkX(2)最短路径

1、最短路径问题的常用算法 最短路径问题是图论研究中的经典算法问题,用于计算图中一个顶点到另一个顶点的最短路径。 欢迎关注 Youcans 原创系列,每周更新数模笔记 Python数模笔记-PuLP库 Python数模笔记-StatsModels统计回归 Python数模笔记-Sklearn…

神经网络向量化

神经网络向量化 在本节,我们将引入神经网络的向量化版本。在前面关于神经网络介绍的章节中,我们已经给出了一个部分向量化的实现,它在一次输入一个训练样本时是非常有效率的。下边我们看看如何实现同时处理多个训练样本的算法。具体来讲&…

Python数模笔记-NetworkX(3)条件最短路径

1、带有条件约束的最短路径问题 最短路径问题是图论中求两个顶点之间的最短路径问题,通常是求最短加权路径。 条件最短路径,指带有约束条件、限制条件的最短路径。例如,顶点约束,包括必经点或禁止点的限制;边的约束&…

简单技能之程序调试入门

简单技能之程序调试入门 黑盒测试 等价类划分

Python数模笔记-NetworkX(4)最小生成树

1、生成树和最小生成树 1.1 生成树 连通的无圈图称为树,就是不包含循环的回路的连通图。 对于无向连通图,生成树(Spanning tree)是原图的极小连通子图,它包含原图中的所有 n 个顶点,并且有保持图连通的最…

Python数模笔记-NetworkX(5)关键路径法

关键路径法(Critical path method,CPM)是一种计划管理方法,通过分析项目过程中工序进度安排寻找关键路径,确定最短工期,广泛应用于系统分析和项目管理。 1、拓扑序列与关键路径 1.1 拓扑序列 一个大型工程…

Python小白的数学建模课-01.新手必读

Python 完全可以满足数学建模的需要。 Python 是数学建模的最佳选择之一,而且在其它工作中也无所不能。 『Python小白的数学建模课 Youcans』 带你从数模小白成为国赛达人。 欢迎关注『Python小白的数学建模课 Youcans』系列,每周持续更新 Python小白…

Python的数学建模课-02.数据导入

数据导入是所有数模编程的第一步,比你想象的更重要。 先要学会一种未必最佳,但是通用、安全、简单、好学的方法。 『Python小白的数学建模课 Youcans』 带你从数模小白成为国赛达人。 1. 数据导入是所有数模编程的第一步 编程求解一个数模问题&#…

UFIDL稀疏自编码代码实现及解释

UFIDL稀疏自编码代码实现及解释 1.今天我们来讲一下UFIDL的第一个练习。 1.我们来看看最难的一个.m文件 %% ---------- YOUR CODE HERE -------------------------------------- % Instructions: Compute the cost/optimization objective J_sparse(W,b) for the Sparse Aut…

Python小白的数学建模课-A2.2021年数维杯C题(运动会优化比赛模式探索)探讨

关注收藏,国赛再会。 运动会优化比赛模式问题,是公平分配问题。 『Python小白的数学建模课 Youcans』带你从数模小白成为国赛达人。 2021第六届数维杯大学生数学建模 赛题已于5月27日公布,C题是"运动会优化比赛模式探索"。本文对…

Python小白的数学建模课-03.线性规划

线性规划是很多数模培训讲的第一个算法,算法很简单,思想很深刻。 要通过线性规划问题,理解如何学习数学建模、如何选择编程算法。 『Python小白的数学建模课 Youcans』带你从数模小白成为国赛达人。 1. 求解方法、算法和编程方案 线性规…

Python小白的数学建模课-A1.国赛赛题类型分析

分析赛题类型,才能有的放矢。 评论区留下邮箱地址,送你国奖论文分析 『Python小白的数学建模课 Youcans』 带你从数模小白成为国赛达人。 1. 数模竞赛国赛 A题类型分析 年份题目要求方法2020A炉温曲线建立温度模型,计算炉温曲线&#xff…