Python数模笔记-Scipy库(1)线性规划问题


1、最优化问题建模

最优化问题的三要素是决策变量、目标函数和约束条件。

(1)分析影响结果的因素是什么,确定决策变量
(2)决策变量与优化目标的关系是什么,确定目标函数
(3)决策变量所受的限制条件是什么,确定约束条件

最优化问题的建模,通常按照以下步骤进行:

(1)问题定义,确定决策变量、目标函数和约束条件;
(2)模型构建,由问题描述建立数学方程,并转化为标准形式的数学模型;
(3)模型求解,用标准模型的优化算法对模型求解,得到优化结果;
(4)模型检验,统计检验和灵敏度分析。


欢迎关注 Youcans 原创系列,每周更新数模笔记

Python数模笔记-PuLP库
Python数模笔记-StatsModels统计回归
Python数模笔记-Sklearn
Python数模笔记-NetworkX
Python数模笔记-模拟退火算法



2、线性规划

线性规划(Linear programming),是研究线性约束条件下线性目标函数的极值问题的优化方法,常用于解决利用现有的资源得到最优决策的问题。
  线性规划模型的一般形式如下:

min  fx = c1*x1 + …+ cn*xn
  s.t. a11*x1+…+a1n*Xn ≤ b1
    …
    am1*x1+…+amn*Xn ≤ bm
    x1≥0,…,xn≥0

其中:fx 是目标函数,求最小值;x1,…xn 是决策变量;aij, bi 是不等式约束的参数。




3、Scipy 求解线性规划

Python 的 SciPy 库带有用于解决线性编程问题的 linprog 函数。
  linporg 函数对于线性规划模型的描述为:

min fx = C’*X fx 是目标函数
  s.t. A_ub*X <= B_ub 不等式约束
    A_eq*X = B_eq 等式约束
    lb <= X <= ub 取值范围

其中:

fx 是目标函数,求最小值;
X 是决策变量,向量;
C 是目标函数的参数向量;
A_ub 是不等式约束的参数矩阵,B_ub 是不等式约束的参数向量;
A_eq 是等式约束的参数矩阵,B_eq 是等式约束的参数向量;
lb,ub 是参数向量,(lb,ub) 是 X 的取值范围。

注意:
  (1)问题表示为:求 fx 的最小值,如果问题要求 fx 的最大值则要通过 fx‘= -fx 将问题转化为求 fx’ 的最小值;
  (2)不等式约束条件表示为:小于等于,如果约束条件为大于等于则要通过不等式两侧乘以 -1 将约束条件转化为小于等于的形式。
linporg 函数求解线性规划问题的输出参数为:

con: 等式约束的残差(名义上为 0),B_eq - A_eqX
fun: 目标函数的当前值(最小值),C’X
message: 算法状态描述
nit: 当前迭代次数
slack: 不等式约束的松弛值,B_ub - A_ub
X
status: 算法退出时的状态,0:优化完成,1:达到最大迭代次数,2:不可行,3:不收敛,4:数值困难
success: 当算法成功完成时为 True
x: 当前解,向量


4 实例

4.1 问题模型:

    max     fx = 2*x1 + 3*x2 - 5*x3s.t.    x1 + x2 + x3 = 72*x1 - 5*x2 + x3 >= 10x1 + 3*x2 + x3 <= 12x1, x2, x3 >=0

4.2 模型转换:

首先要将求解问题的模型转化为 Linprog 的标准形式:

(1)求最大值问题要转换为求最小值问题:C = [-2, 3, 5]
(2)当约束条件为 大于等于 时要加负号:A_ub = [[-2, 5, -1], [1, 3, 1]]
(3)由 x1,x2,x3>=0 和 x1+x2+x3=7 可知:0 <= x1,x2,x3 <= 7

4.3 python 程序:

import numpy as np  # 导入 numpy
from scipy.optimize import linprog  # 导入 scipyc = np.array([-2, -3, 5])
A_ub = np.array([[-2, 5, -1], [1, 3, 1]])  # 不等式约束参数矩阵
B_ub = np.array([-10, 12])  # 不等式约束参数向量
A_eq = np.array([[1, 1, 1]])  # 等式约束参数矩阵
B_eq = np.array([7])  # 等式约束参数向量
x1 = (0, 7)  # x1 的取值范围,lb1 < x1 < ub1
x2 = (0, 7)  # x2 的取值范围,lb2 < x2 < ub2
x3 = (0, 7)  # x3 的取值范围,lb3 < x3 < ub3
res = linprog(c, A_ub, B_ub, A_eq, B_eq, bounds=(x1, x2, x3))
print(res)

4.4 运行结果:

     con: array([1.19830306e-08])fun: -14.57142854231215message: 'Optimization terminated successfully.'nit: 5slack: array([-3.70231543e-08,  3.85714287e+00])status: 0success: Truex: array([6.42857141e+00, 5.71428573e-01, 9.82192085e-10])


版权说明:
YouCans 原创作品,转载必须注明原文链接
Copyright 2021 YouCans, XUPT
Crated:2021-04-28


欢迎关注 Youcans 原创系列,每周更新数模笔记

Python数模笔记-PuLP库(1)线性规划入门
Python数模笔记-PuLP库(2)线性规划进阶
Python数模笔记-PuLP库(3)线性规划实例
Python数模笔记-StatsModels 统计回归(1)简介
Python数模笔记-StatsModels 统计回归(2)线性回归
Python数模笔记-StatsModels 统计回归(3)模型数据的准备
Python数模笔记-StatsModels 统计回归(4)可视化
Python数模笔记-Sklearn (1)介绍
Python数模笔记-Sklearn (2)聚类分析
Python数模笔记-Sklearn (3)主成分分析
Python数模笔记-Sklearn (4)线性回归
Python数模笔记-Sklearn (5)支持向量机
Python数模笔记-模拟退火算法(1)多变量函数优化
Python数模笔记-模拟退火算法(2)约束条件的处理
Python数模笔记-模拟退火算法(3)整数规划问题
Python数模笔记-模拟退火算法(4)旅行商问题
Python数模笔记-NetworkX(1)图的操作
Python数模笔记-NetworkX(2)最短路径
Python数模笔记-NetworkX(3)条件最短路径

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/566152.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

简单技能之程序调试入门

简单技能之程序调试入门 黑盒测试 等价类划分

Python数模笔记-NetworkX(4)最小生成树

1、生成树和最小生成树 1.1 生成树 连通的无圈图称为树&#xff0c;就是不包含循环的回路的连通图。 对于无向连通图&#xff0c;生成树&#xff08;Spanning tree&#xff09;是原图的极小连通子图&#xff0c;它包含原图中的所有 n 个顶点&#xff0c;并且有保持图连通的最…

Python数模笔记-NetworkX(5)关键路径法

关键路径法&#xff08;Critical path method&#xff0c;CPM&#xff09;是一种计划管理方法&#xff0c;通过分析项目过程中工序进度安排寻找关键路径&#xff0c;确定最短工期&#xff0c;广泛应用于系统分析和项目管理。 1、拓扑序列与关键路径 1.1 拓扑序列 一个大型工程…

Python小白的数学建模课-01.新手必读

Python 完全可以满足数学建模的需要。 Python 是数学建模的最佳选择之一&#xff0c;而且在其它工作中也无所不能。 『Python小白的数学建模课 Youcans』 带你从数模小白成为国赛达人。 欢迎关注『Python小白的数学建模课 Youcans』系列&#xff0c;每周持续更新 Python小白…

Python的数学建模课-02.数据导入

数据导入是所有数模编程的第一步&#xff0c;比你想象的更重要。 先要学会一种未必最佳&#xff0c;但是通用、安全、简单、好学的方法。 『Python小白的数学建模课 Youcans』 带你从数模小白成为国赛达人。 1. 数据导入是所有数模编程的第一步 编程求解一个数模问题&#…

UFIDL稀疏自编码代码实现及解释

UFIDL稀疏自编码代码实现及解释 1.今天我们来讲一下UFIDL的第一个练习。 1.我们来看看最难的一个.m文件 %% ---------- YOUR CODE HERE -------------------------------------- % Instructions: Compute the cost/optimization objective J_sparse(W,b) for the Sparse Aut…

Python小白的数学建模课-A2.2021年数维杯C题(运动会优化比赛模式探索)探讨

关注收藏&#xff0c;国赛再会。 运动会优化比赛模式问题&#xff0c;是公平分配问题。 『Python小白的数学建模课 Youcans』带你从数模小白成为国赛达人。 2021第六届数维杯大学生数学建模 赛题已于5月27日公布&#xff0c;C题是"运动会优化比赛模式探索"。本文对…

Python小白的数学建模课-03.线性规划

线性规划是很多数模培训讲的第一个算法&#xff0c;算法很简单&#xff0c;思想很深刻。 要通过线性规划问题&#xff0c;理解如何学习数学建模、如何选择编程算法。 『Python小白的数学建模课 Youcans』带你从数模小白成为国赛达人。 1. 求解方法、算法和编程方案 线性规…

Python小白的数学建模课-A1.国赛赛题类型分析

分析赛题类型&#xff0c;才能有的放矢。 评论区留下邮箱地址&#xff0c;送你国奖论文分析 『Python小白的数学建模课 Youcans』 带你从数模小白成为国赛达人。 1. 数模竞赛国赛 A题类型分析 年份题目要求方法2020A炉温曲线建立温度模型&#xff0c;计算炉温曲线&#xff…

白话(whitening)

白化 Contents [hide]1 介绍2 2D 的例子3 ZCA白化4 正则化5 中英文对照6 中文译者 介绍 我们已经了解了如何使用PCA降低数据维度。在一些算法中还需要一个与之相关的预处理步骤&#xff0c;这个预处理过程称为白化&#xff08;一些文献中也叫sphering&#xff09;。举例来说&…

Python小白的数学建模课-04.整数规划

整数规划与线性规划的差别只是变量的整数约束。 问题区别一点点&#xff0c;难度相差千万里。 选择简单通用的编程方案&#xff0c;让求解器去处理吧。 『Python小白的数学建模课 Youcans』带你从数模小白成为国赛达人。 1. 从线性规划到整数规划 1.1 为什么会有整数规划&…

实现主成分分析和白化

实现主成分分析和白化 在这一节里&#xff0c;我们将总结PCA, PCA白化和ZCA白化算法&#xff0c;并描述如何使用高效的线性代数库来实现它们。 首先&#xff0c;我们需要确保数据的均值&#xff08;近似&#xff09;为零。对于自然图像&#xff0c;我们通过减去每个图像块(patc…

Python小白的数学建模课-05.0-1规划

0-1 规划不仅是数模竞赛中的常见题型&#xff0c;也具有重要的现实意义。 双十一促销中网购平台要求二选一&#xff0c;就是互斥的决策问题&#xff0c;可以用 0-1规划建模。 小白学习 0-1 规划&#xff0c;首先要学会识别 0-1规划&#xff0c;学习将问题转化为数学模型。 『…

mac下一些终端命令的使用

mac基础终端命令入门作为一名编程人员&#xff0c;&#xff08;叫程序猿显得屌丝&#xff0c;叫攻城狮感觉还达不到&#xff09;&#xff0c;我经常看到许多大神在终端里面进行一些神操作。鉴于此&#xff0c;我今天就百度了一下&#xff0c;别问我为什么不Google&#xff0c;穷…

Python小白的数学建模课-A3. 12个新冠疫情数模竞赛赛题与点评

新冠疫情深刻和全面地影响着社会和生活&#xff0c;已经成为数学建模竞赛的背景帝。 收集了与新冠疫情相关的的数学建模竞赛赛题&#xff0c;关注收藏本文或者在评论区留下邮箱&#xff0c;送你赛题分析点评及优秀论文。 『Python小白的数学建模课 Youcans』带你从数模小白成…

Python小白的数学建模课-06.固定费用问题

Python 实例介绍固定费用问题的建模与求解。 学习 PuLP工具包中处理复杂问题的快捷使用方式。 『Python小白的数学建模课 Youcans』带你从数模小白成为国赛达人。 前文讲到几种典型的 0-1 规划问题&#xff0c;给出了 PuLP 求解的案例。由于 0-1 规划问题种类很多&#xff0…

html细节

HTML细节一 以下是使文本显示特殊样式的标签<em>把文本定义为强调的内容<strong>把文本定义为更强语气的内容<dfn>定义一个定义项目<code>定义计算机代码文本<samp>定义样本文本<kbd>定义键盘文本。表示文本是从键盘上建入的。经常用在与计…

Python小白的数学建模课-07.选址问题

选址问题是要选择设施位置使目标达到最优&#xff0c;是数模竞赛中的常见题型。 小白不一定要掌握所有的选址问题&#xff0c;但要能判断是哪一类问题&#xff0c;用哪个模型。 进一步学习 PuLP工具包中处理复杂问题的字典格式快捷建模方法。 欢迎关注『Python小白的数学建模…

Python小白的数学建模课-09.微分方程模型

小白往往听到微分方程就觉得害怕&#xff0c;其实数学建模中的微分方程模型不仅没那么复杂&#xff0c;而且很容易写出高水平的数模论文。 本文介绍微分方程模型的建模与求解&#xff0c;通过常微分方程、常微分方程组、高阶常微分方程 3个案例手把手教你搞定微分方程。 通过…