Python 实例介绍固定费用问题的建模与求解。
学习 PuLP工具包中处理复杂问题的快捷使用方式。
『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达人。
前文讲到几种典型的 0-1 规划问题,给出了 PuLP 求解的案例。由于 0-1 规划问题种类很多,又是数模竞赛热点,有必要再结合几个实例进行介绍。
1. 固定费用问题案例解析
1.1 固定费用问题(Fixed cost problem)
固定费用问题,是指求解生产成本最小问题时,总成本包括固定成本和变动成本,而选择不同生产方式会有不同的固定成本,因此总成本与选择的生产方式有关。
固定费用问题,实际上是互斥的目标函数问题,对于不同的生产方式具有多个互斥的目标函数,但只有一个起作用。固定费用问题不能用一般的线性规划模型求解。
一般地,设有 m 种生产方式可供选择,采用第 j 种方式时的固定成本为 KjK_jKj、变动成本为 cjc_jcj、产量为 xjx_jxj,则采用各种生产方式的总成本分别为:
minPj={kj+cjxj,xj≥00,xj=0,j=1,...mmin\;P_j = \begin{cases} k_j + c_j x_j,&x_j \geq 0\\ 0,&x_j = 0, j=1,...m \end{cases} minPj={kj+cjxj,0,xj≥0xj=0,j=1,...m
该类问题的建模方法,为了构造统一的目标函数,可以引入 m 个 0-1 变量 y_j 表示是否采用第 j 种生产方式:
yj={0,不采用第j种生产方式1,采用第j种生产方式y_j = \begin{cases} 0,不采用第\;j\;种生产方式\\ 1,采用第\;j\; 种生产方式 \end{cases} yj={0,不采用第j种生产方式1,采用第j种生产方式
于是可以构造新的目标函数和约束条件:
minf(x)=∑j=1m(kjyj+cjxj)s.t.:xj≤yjM,j=1,...mmin\;f(x) = \sum_{j=1} ^m (k_j y_j + c_j x_j)\\ s.t.:\;x_j \leq y_j M,j=1,...m minf(x)=j=1∑m(kjyj+cjxj)s.t.:xj≤yjM,j=1,...m
M 是一个充分大的常数。
欢迎关注『Python小白的数学建模课 @ Youcans』系列,每周持续更新
Python小白的数学建模课-01.新手必读
Python小白的数学建模课-02.数据导入
Python小白的数学建模课-03.线性规划
Python小白的数学建模课-04.整数规划
Python小白的数学建模课-05.0-1规划
Python小白的数学建模课-06.固定费用问题
Python小白的数学建模课-07.选址问题
Python小白的数学建模课-09.微分方程模型
Python小白的数学建模课-10.微分方程边值问题
Python小白的数学建模课-12.非线性规划
Python小白的数学建模课-15.图论的基本概念
Python小白的数学建模课-16.最短路径算法
Python小白的数学建模课-17.条件最短路径算法
Python小白的数学建模课-18.最小生成树问题
Python小白的数学建模课-19.网络流优化问题
Python小白的数学建模课-20.网络流优化案例
1.2 案例问题描述
例题 1:
某服装厂可以生产 A、B、C 三种服装,生产不同种类服装需要租用不同设备,设备租金、生产成本、销售价格等指标如下表所示。
服装种类 | 设备租金 | 材料成本 | 销售价格 | 人工工时 | 设备工时 | 设备可用工时 |
---|---|---|---|---|---|---|
单位 | (元) | (元/件) | (元/件) | (小时/件) | (小时/件) | (小时) |
A | 5000 | 280 | 400 | 5 | 3 | 300 |
B | 2000 | 30 | 40 | 1 | 0.5 | 300 |
C | 2000 | 200 | 300 | 4 | 2 | 300 |
如果各类服装的市场需求都足够大,服装厂每月可用人工时为 2000h,那么应该如何安排生产计划使利润最大?
1.3 建模过程分析
首先要理解生产某种服装就会发生设备租金,租金只与是否生产该产品有关,而与生产数量无关,这就是固定成本。因此本题属于固定费用问题。
有些同学下意识地认为是从 3 种产品中选择一种,但题目中并没有限定必须或只能生产一种产品,因此决策结果可以是都不生产、选择 1 种或 2 种产品、3 种都生产。
决策结果会是什么都不生产吗?有可能的。
每种产品的利润:(销售价格 - 材料成本)× 生产数量 - 设备租金
本题中如果设备租金很高,决策结果就可能是什么都不做时利润最大,这是利润为 0,至少不亏。
现在可以用固定费用问题的数学模型来描述问题了:
设 xix_ixi 为是否生产第 iii 种服装,xix_ixi 是 0/1变量:
xi={0,不生产第i种服装1,生产第i种服装,i=1,2,3x_i = \begin{cases} 0,不生产第\;i\;种服装\\ 1,生产第\;i\;种服装,i=1,2,3 \end{cases} xi={0,不生产第i种服装1,生产第i种服装,i=1,2,3
设 yiy_iyi 为生产第 iii 种服装的数量, yiy_iyi 是整数类型。说 yiy_iyi 是实数变量的同学,你经常穿半条裤子吗?
根据条件确定决策变量的取值范围。例如,本例中的产量 yiy_iyi 显然要大于等于 0。进一步地,题目并没有直接给出 yiy_iyi 的取值上限,但可以从设备单件工时与设备可用工时的关系推导出取值上限为 [100, 600, 150],也可以从单位人工工时与人工可用工时的关系推导出上限 [400, 2000, 500],最后取较小者为 [100, 600, 150]。
数学模型就可以表达为:
maxz=120y1+10y2+100y3−5000x1−2000x2−2000x3s.t.:{5y1+y2+4y3≤20003y1≤300x10.5y2≤300x22y3≤300x30≤y1≤1000≤y2≤6000≤y3≤150max\; z = 120 y_1 + 10 y_2 + 100 y_3 - 5000 x_1 - 2000 x_2 - 2000 x_3\\ s.t.:\;\begin{cases} 5 y_1 + y_2 + 4 y_3 \leq 2000\\ 3 y_1 \leq 300 x_1\\ 0.5 y_2 \leq 300 x_2\\ 2 y_3 \leq 300 x_3 \\ 0 \leq y_1 \leq 100\\ 0 \leq y_2 \leq 600\\ 0 \leq y_3 \leq 150\\ \end{cases} maxz=120y1+10y2+100y3−5000x1−2000x2−2000x3s.t.:⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧5y1+y2+4y3≤20003y1≤300x10.5y2≤300x22y3≤300x30≤y1≤1000≤y2≤6000≤y3≤150
1.4 PuLP 求解固定费用问题的编程
编程求解建立的数学模型,用标准模型的优化算法对模型求解,得到优化结果。
模型求解的编程步骤与之前的线性规划、整数规划问题并没有什么区别,这就是 PuLP工具包的优势。
(0)导入 PuLP库函数
import pulp
(1)定义一个规划问题
FixedCostP1 = pulp.LpProblem("Fixed_cost_problem", sense=pulp.LpMaximize) # 定义问题,求最大值
pulp.LpProblem 用来定义问题的构造函数。"FixedCostP1"是用户定义的问题名。
参数 sense 指定问题求目标函数的最小值/最大值 。本例求最大值,选择 “pulp.LpMaximize” 。
(2)定义决策变量
x1 = pulp.LpVariable('A', cat='Binary') # 定义 x1,0-1变量,是否生产 A 产品x2 = pulp.LpVariable('B', cat='Binary') # 定义 x2,0-1变量,是否生产 B 产品x3 = pulp.LpVariable('C', cat='Binary') # 定义 x3,0-1变量,是否生产 C 产品y1 = pulp.LpVariable('yieldA', lowBound=0, upBound=100, cat='Integer') # 定义 y1,整型变量y2 = pulp.LpVariable('yieldB', lowBound=0, upBound=600, cat='Integer') # 定义 y2,整型变量y3 = pulp.LpVariable('youCans', lowBound=0, upBound=150, cat='Integer') # 定义 y3,整型变量
pulp.LpVariable 用来定义决策变量的函数。参数 cat 用来设定变量类型,’ Binary ’ 表示0/1变量(用于0/1规划问题),’ Integer ’ 表示整数变量。‘lowBound’、‘upBound’ 分别表示变量取值范围的下限和上限。
(3)添加目标函数
FixedCostP1 += pulp.lpSum(-5000*x1-2000*x2-2000*x3+120*y1+10*y2+100*y3) # 设置目标函数 f(x)
(4)添加约束条件
FixedCostP1 += (5*y1 + y2 + 4*y3 <= 2000) # 不等式约束FixedCostP1 += (3*y1 - 300*x1 <= 0) # 不等式约束FixedCostP1 += (0.5*y2 - 300*x2 <= 0) # 不等式约束FixedCostP1 += (2*y3 - 300*x3 <= 0) # 不等式约束
添加约束条件使用 “问题名 += 约束条件表达式” 格式。
约束条件可以是等式约束或不等式约束,不等式约束可以是 小于等于 或 大于等于,分别使用关键字">="、"<=“和”=="。
(5)求解
FixedCostP1.solve()
solve() 是求解函数,可以对求解器、求解精度进行设置。
1.5 Python 例程:固定费用问题
# mathmodel07_v1.py
# Demo05 of mathematical modeling algorithm
# Solving assignment problem with PuLP.
# Copyright 2021 Youcans, XUPT
# Crated:2021-06-04
# Python小白的数学建模课 @ Youcansimport pulp # 导入 pulp 库# 主程序
def main():# 固定费用问题(Fixed cost problem)print("固定费用问题(Fixed cost problem)")# 问题建模:"""决策变量:y(i) = 0, 不生产第 i 种产品y(i) = 1, 生产第 i 种产品 x(i), 生产第 i 种产品的数量, i>=0 整数i=1,2,3目标函数:min profit = 120x1 + 10x2+ 100x3 - 5000y1 - 2000y2 - 2000y3约束条件:5x1 + x2 + 4x3 <= 20003x1 <= 300y10.5x2 <= 300y22x3 <= 300y3变量取值范围:Youcans XUPT0<=x1<=100, 0<=x2<=600, 0<=x3<=150, 整数变量y1, y2 ,y3 为 0/1 变量 """# 1. 固定费用问题(Fixed cost problem), 使用 PuLP 工具包求解# (1) 建立优化问题 FixedCostP1: 求最大值(LpMaximize)FixedCostP1 = pulp.LpProblem("Fixed_cost_problem_1", sense=pulp.LpMaximize) # 定义问题,求最大值# (2) 建立变量x1 = pulp.LpVariable('A', cat='Binary') # 定义 x1,0-1变量,是否生产 A 产品x2 = pulp.LpVariable('B', cat='Binary') # 定义 x2,0-1变量,是否生产 B 产品x3 = pulp.LpVariable('C', cat='Binary') # 定义 x3,0-1变量,是否生产 C 产品y1 = pulp.LpVariable('yieldA', lowBound=0, upBound=100, cat='Integer') # 定义 y1,整型变量y2 = pulp.LpVariable('yieldB', lowBound=0, upBound=600, cat='Integer') # 定义 y2,整型变量y3 = pulp.LpVariable('yieldC', lowBound=0, upBound=150, cat='Integer') # 定义 y3,整型变量# (3) 设置目标函数FixedCostP1 += pulp.lpSum(-5000*x1-2000*x2-2000*x3+120*y1+10*y2+100*y3) # 设置目标函数 f(x)# (4) 设置约束条件FixedCostP1 += (5*y1 + y2 + 4*y3 <= 2000) # 不等式约束FixedCostP1 += (3*y1 - 300*x1 <= 0) # 不等式约束FixedCostP1 += (0.5*y2 - 300*x2 <= 0) # 不等式约束FixedCostP1 += (2*y3 - 300*x3 <= 0) # 不等式约束# (5) 求解 youcansFixedCostP1.solve()# (6) 打印结果print(FixedCostP1.name)if pulp.LpStatus[FixedCostP1.status] == "Optimal": # 获得最优解for v in FixedCostP1.variables(): # youcansprint(v.name, "=", v.varValue) # 输出每个变量的最优值print("Youcans F(x) = ", pulp.value(FixedCostP1.objective)) # 输出最优解的目标函数值returnif __name__ == '__main__': # Copyright 2021 YouCans, XUPTmain() # Python小白的数学建模课 @ Youcans
1.6 Python 例程运行结果
Welcome to the CBC MILP Solver
Version: 2.9.0
Build Date: Feb 12 2015 Result - Optimal solution foundFixed_cost_problem_1
A = 1.0
B = 1.0
C = 1.0
yieldA = 100.0
yieldB = 600.0
yieldC = 150.0
Max F(x) = 24000.0
从固定费用问题模型的求解结果可知,A、B、C 三种服装都生产,产量分别为 A/100、B/600、C/150 时获得最大利润为:24000。
2. PuLP 求解规划问题的快捷方法
2.1 PuLP 求解固定费用问题的编程
通过从线性规划、整数规划、0-1规划到上例中的混合0-1规划问题,我们已经充分体会到 PuLP 使用相同的步骤和参数处理不同问题所带来的便利。
但是,如果问题非常复杂,例如变量数量很多,约束条件复杂,逐个定义变量、逐项编写目标函数与约束条件的表达式,不仅显得重复冗长,不方便修改对变量和参数的定义,而且在输入过程中容易发生错误。因此,我们希望用字典、列表、循环等快捷方法来进行变量定义、目标函数和约束条件设置。
PuLP 提供了快捷建模的编程方案,下面我们仍以上节中的固定费用问题为例进行介绍。本例中的问题、条件和参数都与上节完全相同,以便读者进行对照比较快捷方法的具体内容。
(0)导入 PuLP 库函数
import pulp
(1)定义一个规划问题
FixedCostP2 = pulp.LpProblem("Fixed_cost_problem", sense=pulp.LpMaximize) # 定义问题,求最大值
(2)定义决策变量
types = ['A', 'B', 'C'] # 定义产品种类status = pulp.LpVariable.dicts("生产决策", types, cat='Binary') # 定义 0/1 变量,是否生产该产品yields = pulp.LpVariable.dicts("生产数量", types, lowBound=0, upBound=600, cat='Integer') # 定义整型变量
本例中的快捷方法使用列表 types 定义 0/1 变量 status 和 整型变量 yields,不论产品的品种有多少,都只有以上几句,从而使程序大为简化。
(3)添加目标函数
fixedCost = {'A':5000, 'B':2000, 'C':2000} # 各产品的 固定费用unitProfit = {'A':120, 'B':10, 'C':100} # 各产品的 单位利润FixedCostP2 += pulp.lpSum([(yields[i]*unitProfit[i]- status[i]*fixedCost[i]) for i in types])
虽然看起来本例中定义目标函数的程序语句较长,但由于使用字典定义参数、使用 for 循环定义目标函数,因此程序更加清晰、简明、便于修改参数、不容易输入错误。
(4)添加约束条件
humanHours = {'A':5, 'B':1, 'C':4} # 各产品的 单位人工工时machineHours = {'A':3.0, 'B':0.5, 'C':2.0} # 各产品的 单位设备工时maxHours = {'A':300, 'B':300, 'C':300} # 各产品的 最大设备工时FixedCostP2 += pulp.lpSum([humanHours[i] * yields[i] for i in types]) <= 2000 # 不等式约束for i in types:FixedCostP2 += (yields[i]*machineHours[i] - status[i]*maxHours[i] <= 0) # 不等式约束
快捷方法对于约束条件的定义与对目标函数的定义相似,使用字典定义参数,使用循环定义约束条件,使程序简单、结构清楚。
注意本例使用了两种不同的循环表达方式:语句内使用 for 循环遍历列表实现所有变量的线性组合,标准的 for 循环结构实现多组具有相似结构的约束条件。读者可以对照数学模型及上例的例程,理解这两种定义约束条件的快捷方法。
(5)求解和结果的输出
# (5) 求解FixedCostP2.solve()# (6) 打印结果print(FixedCostP2.name)temple = "品种 %(type)s 的决策是:%(status)s,生产数量为:%(yields)d"if pulp.LpStatus[FixedCostP2.status] == "Optimal": # 获得最优解for i in types:output = {'type': i,'status': '同意' if status[i].varValue else '否决','yields': yields[i].varValue}print(temple % output) # youcans@qq.comprint("最大利润 = ", pulp.value(FixedCostP2.objective)) # 输出最优解的目标函数值
由于快捷方法使用列表或字典定义变量,对求解的优化结果也便于实现结构化的输出。
2.2 Python 例程:PuLP 快捷方法
# mathmodel07_v1.py
# Demo05 of mathematical modeling algorithm
# Solving assignment problem with PuLP.
# Copyright 2021 Youcans, XUPT
# Crated:2021-06-04
# Python小白的数学建模课 @ Youcansimport pulp # 导入 pulp 库# 主程序
def main():# 2. 问题同上,PuLP 快捷方法示例# (1) 建立优化问题 FixedCostP2: 求最大值(LpMaximize)FixedCostP2 = pulp.LpProblem("Fixed_cost_problem_2", sense=pulp.LpMaximize) # 定义问题,求最大值# (2) 建立变量types = ['A', 'B', 'C'] # 定义产品种类status = pulp.LpVariable.dicts("生产决策", types, cat='Binary') # 定义 0/1 变量,是否生产该产品yields = pulp.LpVariable.dicts("生产数量", types, lowBound=0, upBound=600, cat='Integer') # 定义整型变量# (3) 设置目标函数fixedCost = {'A':5000, 'B':2000, 'C':2000} # 各产品的 固定费用unitProfit = {'A':120, 'B':10, 'C':100} # 各产品的 单位利润FixedCostP2 += pulp.lpSum([(yields[i]*unitProfit[i]- status[i]*fixedCost[i]) for i in types])# (4) 设置约束条件humanHours = {'A':5, 'B':1, 'C':4} # 各产品的 单位人工工时machineHours = {'A':3.0, 'B':0.5, 'C':2.0} # 各产品的 单位设备工时maxHours = {'A':300, 'B':300, 'C':300} # 各产品的 最大设备工时FixedCostP2 += pulp.lpSum([humanHours[i] * yields[i] for i in types]) <= 2000 # 不等式约束for i in types:FixedCostP2 += (yields[i]*machineHours[i] - status[i]*maxHours[i] <= 0) # 不等式约束# (5) 求解 youcansFixedCostP2.solve()# (6) 打印结果print(FixedCostP2.name)temple = "品种 %(type)s 的决策是:%(status)s,生产数量为:%(yields)d"if pulp.LpStatus[FixedCostP2.status] == "Optimal": # 获得最优解for i in types:output = {'type': i,'status': '同意' if status[i].varValue else '否决','yields': yields[i].varValue}print(temple % output)print("最大利润 = ", pulp.value(FixedCostP2.objective)) # 输出最优解的目标函数值returnif __name__ == '__main__': # Copyright 2021 YouCans, XUPTmain() # Python小白的数学建模课 @ Youcans
2.3 Python 例程运行结果
Welcome to the CBC MILP Solver
Version: 2.9.0
Build Date: Feb 12 2015 Result - Optimal solution foundFixed_cost_problem_2
品种 A 的决策是:同意,生产数量为:100
品种 B 的决策是:同意,生产数量为:600
品种 C 的决策是:同意,生产数量为:150
最大利润 = 24000.0
本例的问题、条件和参数都与上节完全相同,只是采用 PuLP 提供的快捷建模的编程方案,优化结果也与 PuLP 标准方法完全相同,但本例使用了结构化的输出显示,使输出结果更为直观。
3. 课后练习
- 修改生产某种服装的设备租金,例如将 A 产品租金调整为 10000、20000元,观察求解结果有何差异?
- 将各种设备租金都调整为 20000元,观察求解结果有何差异?该结果有何现实意义?
- 如果希望找到影响是否生产某种服装决策的设备租金的大小,即租金低于该值就可以生产、高于该值则不能生产,应该如何处理?
【本节完】
版权声明:
欢迎关注『Python小白的数学建模课 @ Youcans』 原创作品,持续更新中
原创作品,转载必须标注原文链接:(https://blog.csdn.net/youcans/article/details/117618928)。
Copyright 2021 Youcans, XUPT
Crated:2021-06-04
欢迎关注 『Python小白的数学建模课 @ Youcans』 系列,持续更新
Python小白的数学建模课-01.新手必读
Python小白的数学建模课-02.数据导入
Python小白的数学建模课-03.线性规划
Python小白的数学建模课-04.整数规划
Python小白的数学建模课-05.0-1规划
Python小白的数学建模课-06.固定费用问题
Python小白的数学建模课-07.选址问题
Python小白的数学建模课-09.微分方程模型
Python小白的数学建模课-10.微分方程边值问题
Python小白的数学建模课-12.非线性规划
Python小白的数学建模课-15.图论的基本概念
Python小白的数学建模课-16.最短路径算法
Python小白的数学建模课-17.条件最短路径算法
Python小白的数学建模课-18.最小生成树问题
Python小白的数学建模课-19.网络流优化问题
Python小白的数学建模课-20.网络流优化案例
Python小白的数学建模课-A1.国赛赛题类型分析
Python小白的数学建模课-A2.2021年数维杯C题探讨
Python小白的数学建模课-A3.12个新冠疫情数模竞赛赛题及短评
Python小白的数学建模课-B2. 新冠疫情 SI模型
Python小白的数学建模课-B3. 新冠疫情 SIS模型
Python小白的数学建模课-B4. 新冠疫情 SIR模型
Python小白的数学建模课-B5. 新冠疫情 SEIR模型
Python小白的数学建模课-B6. 新冠疫情 SEIR改进模型
Python数模笔记-PuLP库
Python数模笔记-StatsModels统计回归
Python数模笔记-Sklearn
Python数模笔记-NetworkX
Python数模笔记-模拟退火算法