Python数模笔记-NetworkX(1)图的操作


1、NetworkX 图论与网络工具包

NetworkX 是基于 Python 语言的图论与复杂网络工具包,用于创建、操作和研究复杂网络的结构、动力学和功能。

NetworkX 可以以标准和非标准的数据格式描述图与网络,生成图与网络,分析网络结构,构建网络模型,设计网络算法,绘制网络图形。

NetworkX 提供了图形的类、对象、图形生成器、网络生成器、绘图工具,内置了常用的图论和网络分析算法,可以进行图和网络的建模、分析和仿真。


欢迎关注 Youcans 原创系列,每周更新数模笔记

Python数模笔记-PuLP库
Python数模笔记-StatsModels统计回归
Python数模笔记-Sklearn
Python数模笔记-NetworkX
Python数模笔记-模拟退火算法


NetworkX 的官网和文档

官网地址:https://networkx.org/

官方文档: https://networkx.org/documentation/stable/

pdf 文档: https://networkx.org/documentation/stable/_downloads/networkx_reference.pdf

NetworkX 的安装

NetworkX 的安装要求:Python 3.2 以上版本,推荐安装 NumPy、SciPy、Matplotlib、Graphviz 工具包的支持。

pip 安装:

pip3 install networkx

pip3 install networkx -i https://mirrors.aliyun.com/pypi/simple

在这里插入图片描述

本系列写作计划

NetworkX 的功能非常强大和庞杂,所涉及内容远远、远远地超出了数学建模的范围,甚至于花了很长时间还不能对其进行比较系统的概括。
本系列以数模学习和应用的需求为主线,介绍相关的基本功能和典型算法的应用。



2、图、顶点和边的创建与基本操作

图由顶点和连接顶点的边构成,但与顶点的位置、边的曲直长短无关。

图提供了一种处理关系和交互等抽象概念的更好的方法,它还提供了直观的视觉方式来思考这些概念。

Networkx支持创建简单无向图、有向图和多重图(multigraph);内置许多标准的图论算法,节点可为任意数据;支持任意的边值维度,功能丰富,简单易用。

2.1 图的基本概念

  • 图(Graph)。若干点和一些连接这些点的连线,所构成关系结构就是一个图。
  • 顶点(Node)和边(Edge)。图中的点称为顶点,也称节点。两个顶点之间的连线,称为边。
  • 平行边(Parallel edge)和循环(Cycle)。起点相同、终点也相同的两条边称为平行边。起点和终点重合的边称为循环。
  • 有向图(Digraph)和无向图(Undirected graph)。图中的每条边都带有方向,称为有向图;图中的每条边都没有方向,称为无向图;有的边带有方向,有的边没有方向,称为混合图。
  • 赋权图(Weighted graph)。图中的每条边都有一个或多个对应的参数,称为赋权图。该参数称为这条边的权,权可以用来表示两点间的距离、时间、费用。
  • 度(Degree)。与顶点相连的边的数量,称为该顶点的度。

2.2 图、顶点和边的操作

Networkx很容易创建图、向图中添加顶点和边、从图中删除顶点和边,也可以查看、删除顶点和边的属性。

图的创建

Graph()类、DiGraph()类、MultiGraph()类和MultiDiGraph() 类分别用来创建 无向图、有向图、多图和有向多图。

class Graph(incoming_graph_data=None, **attr)

import networkx as nx
import networkx as nx  # 导入 NetworkX 工具包
# 创建 图
G1 = nx.Graph()  # 创建:空的 无向图
G2 = nx.DiGraph()  #创建:空的 有向图
G3 = nx.MultiGraph()  #创建:空的 多图
G4 = nx.MultiDiGraph()  #创建:空的 有向多图

顶点的添加、删除和查看

图的每个顶点都有唯一的标签属性(label),可以用整数或字符类型表示,顶点还可以自定义任意属性。

顶点的常用操作:添加顶点,删除顶点,定义顶点属性,查看顶点和顶点属性。

# 顶点(node)的操作
G1.add_node(1)  # 向 G1 添加顶点 1
G1.add_node(1,name='n1',weight=1.0)  # 添加顶点 1,定义 name, weight 属性
G1.add_node(2,date='May-16') # 添加顶点 2,定义 time 属性
G1.add_nodes_from([3, 0, 6], dist=1)  # 添加多个顶点:3,0,6
# 查看顶点和顶点属性
print(G1.nodes())  # 查看顶点
# [1, 2, 3, 0, 6]
print(G1._node)  # 查看顶点属性
# {1: {'name': 'n1', 'weight': 1.0}, 2: {'date': 'May-16'}, 3: {'dist': 1}, 0: {'dist': 1}, 6: {'dist': 1}}
H = nx.path_graph(8)  # 创建 路径图 H:由 n个节点、n-1条边连接,节点标签为 0 至 n-1
G1.add_nodes_from(H)  # 由路径图 H 向图 G1 添加顶点 0~9
print(G1.nodes())  # 查看顶点
# [1, 2, 3, 0, 6, 4, 5, 7]  # 顶点列表
G1.add_nodes_from(range(10, 15))  # 向图 G1 添加顶点 10~14
print(G1.nodes())  # 查看顶点
# [1, 2, 3, 0, 6, 4, 5, 7, 10, 11, 12, 13, 14]
# 从图中删除顶点
G1.remove_nodes_from([1, 11, 13, 14])  # 通过顶点标签的 list 删除多个顶点
print(G1.nodes())  # 查看顶点
# [2, 3, 0, 6, 4, 5, 7, 10, 12]  # 顶点列表

边的添加、删除和查看

边是两个顶点之间的连接,在 NetworkX 中用 边是由对应顶点的名字的元组组成 e=(node1,node2)。边可以设置权重、关系等属性。

边的常用操作:添加边,删除边,定义边的属性,查看边和边的属性。向图中添加边时,如果添加的边的顶点是图中不存在的,则自动向图中添加该顶点。

# 边(edge)的操作
G1.add_edge(1,5)  # 向 G1 添加边 1-5,并自动添加图中没有的顶点
G1.add_edge(0,10, weight=2.7)  # 向 G1 添加边 0-10,并设置属性
G1.add_edges_from([(1,2,{'weight':0}), (2,3,{'color':'blue'})])  # 向图中添加边,并设置属性
print(G1.nodes())  # 查看顶点
# [2, 3, 0, 6, 4, 5, 7, 10, 12, 1]  # 自动添加了图中没有的顶点 1
G1.add_edges_from([(3,6),(1,2),(6,7),(5,10),(0,1)])  # 向图中添加多条边
G1.add_weighted_edges_from([(1,2,3.6),[6,12,0.5]])  # 向图中添加多条赋权边: (node1,node2,weight)
G1.remove_edge(0,1)  # 从图中删除边 0-1
# G1.remove_edges_from([(2,3),(1,5),(6,7)])  # 从图中删除多条边
# print(G1.edges(data=True))  # 查看所有边的属性
print(G1.edges)  # 查看所有边
# [(2, 1), (2, 3), (3, 6), (0, 10), (6, 7), (6, 12), (5, 1), (5, 10)]
print(G1.get_edge_data(1,2))  # 查看指定边 1-2 的属性
# {'weight': 3.6}
print(G1[1][2])  # 查看指定边 1-2 的属性
# {'weight': 3.6}

查看图、顶点和边的信息

print(G1.nodes)  # 返回所有的顶点 [node1,...]
# [1, 2, 0, 6, 4, 12, 5, 9, 8, 3, 7]
print(G1.edges)  # 返回所有的边 [(node1,node2),...]
# [(1,5), (1,2), (2,8), (2,3), (0,9), (6,5), (6,7), (6,12), (4,3), (4,5), (9,8), (8,7)]
print(G1.degree)  # 返回各顶点的度 [(node1,degree1),...]
# [(1,2), (2,3), (0,1), (6,3), (4,2), (12,1), (5,3), (9,2), (8,3), (3,2), (7,2)]
print(G1.number_of_nodes())  # 返回所有的顶点 [node1,...]
# 11
print(G1.number_of_edges())  # 返回所有的顶点 [node1,...]
# 12
print(G1[2])  # 返回指定顶点相邻的顶点和顶点的属性
# {1: {'weight': 3.6}, 8: {'color': 'blue'}, 3: {}}
print(G1.adj[2])  # 返回指定顶点相邻的顶点和顶点的属性
# {1: {'weight': 3.6}, 8: {'color': 'blue'}, 3: {}}
print(G1[6][12])  # 返回指定边的属性
# {'weight': 0.5}
print(G1.adj[6][12])  # 返回指定边的属性
# {'weight': 0.5}
print(G1.degree(5))  # 返回指定顶点的度
# 3
print('nx.info:',nx.info(G1))  # 返回图的基本信息
print('nx.degree:',nx.degree(G1))  # 返回图中各顶点的度
print('nx.density:',nx.degree_histogram(G1))  # 返回图中度的分布
print('nx.pagerank:',nx.pagerank(G1))  # 返回图中各顶点的频率分布

2.3 图的属性和方法

图的方法

方法说明
G.has_node(n)当图 G 中包括顶点 n 时返回 True
G.has_edge(u, v)当图 G 中包括边 (u,v) 时返回 True
G.number_of_nodes()返回 图 G 中的顶点的数量
G.number_of_edges()返回 图 G 中的边的数量
G.number_of_selfloops()返回 图 G 中的自循环边的数量
G.degree([nbunch, weight])返回 图 G 中的全部顶点或指定顶点的度
G.selfloop_edges([data, default])返回 图 G 中的全部的自循环边
G.subgraph([nodes])从图 G1中抽取顶点[nodes]及对应边构成的子图
union(G1,G2)合并图 G1、G2
nx.info(G)返回图的基本信息
nx.degree(G)返回图中各顶点的度
nx.degree_histogram(G)返回图中度的分布
nx.pagerank(G)返回图中各顶点的频率分布
nx.add_star(G,[nodes],**attr)向图 G 添加星形网络
nx.add_path(G,[nodes],**attr)向图 G 添加一条路径
nx.add_cycle(G,[nodes],**attr)向图 G 添加闭合路径

例程:

# Copyright 2021 YouCans, XUPT
G1.clear() # 清空图G1
nx.add_star(G1, [1, 2, 3, 4, 5], weight=1)  # 添加星形网络:以第一个顶点为中心
# [(1, 2), (1, 3), (1, 4), (1, 5)]
nx.add_path(G1, [5, 6, 8, 9, 10], weight=2)  # 添加路径:顺序连接 n个节点的 n-1条边
# [(5, 6), (6, 8), (8, 9), (9, 10)]
nx.add_cycle(G1, [7, 8, 9, 10, 12], weight=3)  # 添加闭合回路:循环连接 n个节点的 n 条边
# [(7, 8), (7, 12), (8, 9), (9, 10), (10, 12)]
print(G1.nodes)  # 返回所有的顶点 [node1,...]
nx.draw_networkx(G1)
plt.show()G2 = G1.subgraph([1, 2, 3, 8, 9, 10])
G3 = G1.subgraph([4, 5, 6, 7])
G = nx.union(G2, G3)
print(G.nodes)  # 返回所有的顶点 [node1,...]
# [1, 2, 3, 8, 9, 10, 4, 5, 6, 7]

=== 关注 Youcans(https://blog.csdn.net/youcans)原创系列



3、图的绘制与分析

3.1 图的绘制

可视化是图论和网络问题中很重要的内容。NetworkX 在 Matplotlib、Graphviz 等图形工具包的基础上,提供了丰富的绘图功能。

本系列拟对图和网络的可视化作一个专题,在此只简单介绍基于 Matplotlib 的基本绘图函数。基本绘图函数使用字典提供的位置将节点放置在散点图上,或者使用布局函数计算位置。

方法说明
draw(G[,pos,ax])基于 Matplotlib 绘制 图 G
draw_networkx(G[, pos, arrows, with_labels])基于 Matplotlib 绘制 图 G
draw_networkx_nodes(G, pos[, nodelist, . . . ])绘制图 G 的顶点
draw_networkx_edges(G, pos[, edgelist, . . . ])绘制图 G 的边
draw_networkx_labels(G, pos[, labels, . . . ])绘制顶点的标签
draw_networkx_edge_labels(G, pos[, . . . ])绘制边的标签

其中,nx.draw() 和 nx.draw_networkx() 是最基本的绘图函数,并可以通过自定义函数属性或其它绘图函数设置不同的绘图要求。常用的属性定义如下:

  • ‘node_size’:指定节点的尺寸大小,默认300
  • ‘node_color’:指定节点的颜色,默认红色
  • ‘node_shape’:节点的形状,默认圆形
  • '‘alpha’:透明度,默认1.0,不透明
  • ‘width’:边的宽度,默认1.0
  • ‘edge_color’:边的颜色,默认黑色
  • ‘style’:边的样式,可选 ‘solid’、‘dashed’、‘dotted’、‘dashdot’
  • ‘with_labels’:节点是否带标签,默认True
  • ‘font_size’:节点标签字体大小,默认12
  • ‘font_color’:节点标签字体颜色,默认黑色

在这里插入图片描述

3.2 图的分析

NetwotkX 提供了图论函数对图的结构进行分析:

子图
子图是指顶点和边都分别是图 G 的顶点的子集和边的子集的图。
subgraph()方法,按顶点从图 G 中抽出子图。例程如前。

连通子图
如果图 G 中的任意两点间相互连通,则 G 是连通图。
connected_components()方法,返回连通子图的集合。

G = nx.path_graph(4)
nx.add_path(G, [7, 8, 9])
# 连通子图
listCC = [len(c) for c in sorted(nx.connected_components(G), key=len, reverse=True)]
maxCC = max(nx.connected_components(G), key=len)
print('Connected components:{}'.format(listCC))  # 所有连通子图
# Connected components:[4, 3]
print('Largest connected components:{}'.format(maxCC))  # 最大连通子图
# Largest connected components:{0, 1, 2, 3}

** 强连通**
如果有向图 G 中的任意两点间相互连通,则称 G 是强连通图。
strongly_connected_components()方法,返回所有强连通子图的列表。

# 强连通
G = nx.path_graph(4, create_using=nx.DiGraph())
nx.add_path(G, [3, 8, 1])
# 找出所有的强连通子图
con = nx.strongly_connected_components(G)
print(type(con),list(con))
# <class 'generator'> [{8, 1, 2, 3}, {0}]

弱连通
如果一个有向图 G 的基图是连通图,则有向图 G 是弱连通图。
weakly_connected_components()方法,返回所有弱连通子图的列表。

# 弱连通
G = nx.path_graph(4, create_using=nx.DiGraph())  #默认生成节点 0,1,2,3 和有向边 0->1,1->2,2->3
nx.add_path(G, [7, 8, 3])  #生成有向边:7->8->3
con = nx.weakly_connected_components(G)
print(type(con),list(con))
# <class 'generator'> [{0, 1, 2, 3, 7, 8}]


————————————————
版权声明:本文为CSDN博主「youcans」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/youcans/article/details/116999881
版权说明:
参考文献声明:本文部分内容参考了 NetworkX 官网介绍:https://networkx.org/documentation/stable/
YouCans 原创作品
Copyright 2021 YouCans, XUPT
Crated:2021-05-16



欢迎关注 Youcans 原创系列,每周更新数模笔记

Python数模笔记-PuLP库(1)线性规划入门
Python数模笔记-PuLP库(2)线性规划进阶
Python数模笔记-PuLP库(3)线性规划实例
Python数模笔记-NetworkX(1)图的操作
Python数模笔记-NetworkX(2)最短路径
Python数模笔记-NetworkX(3)条件最短路径
Python数模笔记-StatsModels 统计回归(1)简介
Python数模笔记-StatsModels 统计回归(2)线性回归
Python数模笔记-StatsModels 统计回归(3)模型数据的准备
Python数模笔记-StatsModels 统计回归(4)可视化
Python数模笔记-Sklearn (1)介绍
Python数模笔记-Sklearn (2)聚类分析
Python数模笔记-Sklearn (3)主成分分析
Python数模笔记-Sklearn (4)线性回归
Python数模笔记-Sklearn (5)支持向量机
Python数模笔记-模拟退火算法(1)多变量函数优化
Python数模笔记-模拟退火算法(2)约束条件的处理
Python数模笔记-模拟退火算法(3)整数规划问题
Python数模笔记-模拟退火算法(4)旅行商问题

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/566158.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

逻辑回归的向量化实现样例

逻辑回归的向量化实现样例 我们想用批量梯度上升法对logistic回归分析模型进行训练&#xff0c;其模型如下&#xff1a; 让我们遵从公开课程视频与CS229教学讲义的符号规范&#xff0c;设 &#xff0c;于是 &#xff0c;&#xff0c; 为截距。假设我们有m个训练样本{(, ) ,...…

Python数模笔记-NetworkX(2)最短路径

1、最短路径问题的常用算法 最短路径问题是图论研究中的经典算法问题&#xff0c;用于计算图中一个顶点到另一个顶点的最短路径。 欢迎关注 Youcans 原创系列&#xff0c;每周更新数模笔记 Python数模笔记-PuLP库 Python数模笔记-StatsModels统计回归 Python数模笔记-Sklearn…

神经网络向量化

神经网络向量化 在本节&#xff0c;我们将引入神经网络的向量化版本。在前面关于神经网络介绍的章节中&#xff0c;我们已经给出了一个部分向量化的实现&#xff0c;它在一次输入一个训练样本时是非常有效率的。下边我们看看如何实现同时处理多个训练样本的算法。具体来讲&…

Python数模笔记-NetworkX(3)条件最短路径

1、带有条件约束的最短路径问题 最短路径问题是图论中求两个顶点之间的最短路径问题&#xff0c;通常是求最短加权路径。 条件最短路径&#xff0c;指带有约束条件、限制条件的最短路径。例如&#xff0c;顶点约束&#xff0c;包括必经点或禁止点的限制&#xff1b;边的约束&…

简单技能之程序调试入门

简单技能之程序调试入门 黑盒测试 等价类划分

Python数模笔记-NetworkX(4)最小生成树

1、生成树和最小生成树 1.1 生成树 连通的无圈图称为树&#xff0c;就是不包含循环的回路的连通图。 对于无向连通图&#xff0c;生成树&#xff08;Spanning tree&#xff09;是原图的极小连通子图&#xff0c;它包含原图中的所有 n 个顶点&#xff0c;并且有保持图连通的最…

Python数模笔记-NetworkX(5)关键路径法

关键路径法&#xff08;Critical path method&#xff0c;CPM&#xff09;是一种计划管理方法&#xff0c;通过分析项目过程中工序进度安排寻找关键路径&#xff0c;确定最短工期&#xff0c;广泛应用于系统分析和项目管理。 1、拓扑序列与关键路径 1.1 拓扑序列 一个大型工程…

Python小白的数学建模课-01.新手必读

Python 完全可以满足数学建模的需要。 Python 是数学建模的最佳选择之一&#xff0c;而且在其它工作中也无所不能。 『Python小白的数学建模课 Youcans』 带你从数模小白成为国赛达人。 欢迎关注『Python小白的数学建模课 Youcans』系列&#xff0c;每周持续更新 Python小白…

Python的数学建模课-02.数据导入

数据导入是所有数模编程的第一步&#xff0c;比你想象的更重要。 先要学会一种未必最佳&#xff0c;但是通用、安全、简单、好学的方法。 『Python小白的数学建模课 Youcans』 带你从数模小白成为国赛达人。 1. 数据导入是所有数模编程的第一步 编程求解一个数模问题&#…

UFIDL稀疏自编码代码实现及解释

UFIDL稀疏自编码代码实现及解释 1.今天我们来讲一下UFIDL的第一个练习。 1.我们来看看最难的一个.m文件 %% ---------- YOUR CODE HERE -------------------------------------- % Instructions: Compute the cost/optimization objective J_sparse(W,b) for the Sparse Aut…

Python小白的数学建模课-A2.2021年数维杯C题(运动会优化比赛模式探索)探讨

关注收藏&#xff0c;国赛再会。 运动会优化比赛模式问题&#xff0c;是公平分配问题。 『Python小白的数学建模课 Youcans』带你从数模小白成为国赛达人。 2021第六届数维杯大学生数学建模 赛题已于5月27日公布&#xff0c;C题是"运动会优化比赛模式探索"。本文对…

Python小白的数学建模课-03.线性规划

线性规划是很多数模培训讲的第一个算法&#xff0c;算法很简单&#xff0c;思想很深刻。 要通过线性规划问题&#xff0c;理解如何学习数学建模、如何选择编程算法。 『Python小白的数学建模课 Youcans』带你从数模小白成为国赛达人。 1. 求解方法、算法和编程方案 线性规…

Python小白的数学建模课-A1.国赛赛题类型分析

分析赛题类型&#xff0c;才能有的放矢。 评论区留下邮箱地址&#xff0c;送你国奖论文分析 『Python小白的数学建模课 Youcans』 带你从数模小白成为国赛达人。 1. 数模竞赛国赛 A题类型分析 年份题目要求方法2020A炉温曲线建立温度模型&#xff0c;计算炉温曲线&#xff…

白话(whitening)

白化 Contents [hide]1 介绍2 2D 的例子3 ZCA白化4 正则化5 中英文对照6 中文译者 介绍 我们已经了解了如何使用PCA降低数据维度。在一些算法中还需要一个与之相关的预处理步骤&#xff0c;这个预处理过程称为白化&#xff08;一些文献中也叫sphering&#xff09;。举例来说&…

Python小白的数学建模课-04.整数规划

整数规划与线性规划的差别只是变量的整数约束。 问题区别一点点&#xff0c;难度相差千万里。 选择简单通用的编程方案&#xff0c;让求解器去处理吧。 『Python小白的数学建模课 Youcans』带你从数模小白成为国赛达人。 1. 从线性规划到整数规划 1.1 为什么会有整数规划&…

实现主成分分析和白化

实现主成分分析和白化 在这一节里&#xff0c;我们将总结PCA, PCA白化和ZCA白化算法&#xff0c;并描述如何使用高效的线性代数库来实现它们。 首先&#xff0c;我们需要确保数据的均值&#xff08;近似&#xff09;为零。对于自然图像&#xff0c;我们通过减去每个图像块(patc…

Python小白的数学建模课-05.0-1规划

0-1 规划不仅是数模竞赛中的常见题型&#xff0c;也具有重要的现实意义。 双十一促销中网购平台要求二选一&#xff0c;就是互斥的决策问题&#xff0c;可以用 0-1规划建模。 小白学习 0-1 规划&#xff0c;首先要学会识别 0-1规划&#xff0c;学习将问题转化为数学模型。 『…

mac下一些终端命令的使用

mac基础终端命令入门作为一名编程人员&#xff0c;&#xff08;叫程序猿显得屌丝&#xff0c;叫攻城狮感觉还达不到&#xff09;&#xff0c;我经常看到许多大神在终端里面进行一些神操作。鉴于此&#xff0c;我今天就百度了一下&#xff0c;别问我为什么不Google&#xff0c;穷…

Python小白的数学建模课-06.固定费用问题

Python 实例介绍固定费用问题的建模与求解。 学习 PuLP工具包中处理复杂问题的快捷使用方式。 『Python小白的数学建模课 Youcans』带你从数模小白成为国赛达人。 前文讲到几种典型的 0-1 规划问题&#xff0c;给出了 PuLP 求解的案例。由于 0-1 规划问题种类很多&#xff0…