Python数模笔记-StatsModels 统计回归(2)线性回归

1、背景知识

1.1 插值、拟合、回归和预测

插值、拟合、回归和预测,都是数学建模中经常提到的概念,而且经常会被混为一谈。

  • 插值,是在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。 插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。
  • 拟合,是用一个连续函数(曲线)靠近给定的离散数据,使其与给定的数据相吻合。

因此,插值和拟合都是根据已知数据点求变化规律和特征相似的近似曲线的过程,但是插值要求近似曲线完全经过给定的数据点,而拟合只要求近似曲线在整体上尽可能接近数据点,并反映数据的变化规律和发展趋势。插值可以看作是一种特殊的拟合,是要求误差函数为 0的拟合。由于数据点通常都带有误差,误差为 0 往往意味着过拟合,过拟合模型对于训练集以外的数据的泛化能力是较差的。因此在实践中,插值多用于图像处理,拟合多用于实验数据处理。

  • 回归,是研究一组随机变量与另一组随机变量之间关系的统计分析方法,包括建立数学模型并估计模型参数,并检验数学模型的可信度,也包括利用建立的模型和估计的模型参数进行预测或控制。

  • 预测是非常广泛的概念,在数模中是指对获得的数据、信息进行定量研究,据此建立与预测目的相适应的数学模型,然后对未来的发展变化进行定量地预测。通常认为,插值和拟合都是预测类的方法。

回归是一种数据分析方法,拟合是一种具体的数据处理方法。拟合侧重于曲线参数寻优,使曲线与数据相符;而回归侧重于研究两个或多个变量之间的关系。


欢迎关注 Youcans 原创系列,每周更新数模笔记

Python数模笔记-PuLP库
Python数模笔记-StatsModels统计回归
Python数模笔记-Sklearn
Python数模笔记-NetworkX
Python数模笔记-模拟退火算法

1.2 线性回归

回归分析(Regression analysis)是一种统计分析方法,研究是自变量和因变量之间的定量关系,经常用于预测分析、时间序列模型以及发现变量之间的因果关系。按照变量之间的关系类型,回归分析可以分为线性回归和非线性回归。

线性回归(Linear regression) 假设给定数据集中的目标(y)与特征(X)存在线性关系,即满足一个多元一次方程 。 回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,称为一元线性回归;如果包括两个或多个的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归。
  
  根据样本数据,采用最小二乘法可以得到线性回归模型参数的估计量,并使根据估计参数计算的模型数据与给定的样本数据之间误差的平方和为最小。

进一步地,还需要分析对于样本数据究竟能不能采用线性回归方法,或者说线性相关的假设是否合理、线性模型是否具有良好的稳定性?这就需要使用统计分析进行显著性检验,检验因变量与自变量之间的线性关系是否显著,用线性模型来描述它们之间的关系是否恰当。



2、Statsmodels 进行线性回归

本节结合 Statsmodels 统计分析包 的使用介绍线性拟合和回归分析。线性模型可以表达为如下公式:

2.1 导入工具包

import statsmodels.api as sm
from statsmodels.sandbox.regression.predstd import wls_prediction_std

2.2 导入样本数据

样本数据通常保存在数据文件中,因此要读取数据文件获得样本数据。为便于阅读和测试程序,本文使用随机数生成样本数据。读取数据文件导入数据的方法,将在后文介绍。

# 生成样本数据:
nSample = 100
x1 = np.linspace(0, 10, nSample) # 起点为 0,终点为 10,均分为 nSample个点
e = np.random.normal(size=len(x1)) # 正态分布随机数
yTrue = 2.36 + 1.58 * x1 # y = b0 + b1*x1
yTest = yTrue + e # 产生模型数据

本案例是一元线性回归问题,(yTest,x)是导入的样本数据,我们需要通过线性回归获得因变量 y 与自变量 x 之间的定量关系。yTrue 是理想模型的数值,yTest 模拟实验检测的数据,在理想模型上加入了正态分布的随机误差。

2.3 建模与拟合

一元线性回归模型方程为:
  y = β0 + β1 * x + e
  先通过 sm.add_constant() 向矩阵 X 添加截距列后,再用 sm.OLS() 建立普通最小二乘模型,最后用 model.fit() 就能实现线性回归模型的拟合,并返回拟合与统计分析的结果摘要。

X = sm.add_constant(x1) # 向 x1 左侧添加截距列 x0=[1,…1]
model = sm.OLS(yTest, X) # 建立最小二乘模型(OLS)
results = model.fit() # 返回模型拟合结果

statsmodels.OLS 是 statsmodels.regression.linear_model 的函数,有 4个参数 (endog, exog, missing, hasconst)。

第一个参数 endog 是回归模型中的因变量 y(t), 是1-d array 数据类型。

第二个输入 exog 是自变量 x0(t),x1(t),…,xm(t),是(m+1)-d array 数据类型。
  需要注意的是,statsmodels.OLS 的回归模型没有常数项,其形式为:
  y = B*X + e = β0*x0 + β1*x1 + e, x0 = [1,…1]
  而之前导入的数据 (yTest,x1) 并不包含 x0,因此需要在 x1 左侧增加一列截距列 x0=[1,…1],将自变量矩阵转换为 X = (x0, x1)。函数 sm.add_constant() 实现的就是这个功能。
  参数 missing 用于数据检查, hasconst 用于检查常量,一般情况不需要。

2.4 拟合和统计结果的输出

Statsmodels 进行线性回归分析的输出结果非常丰富,results.summary() 返回了回归分析的摘要。

print(results.summary()) # 输出回归分析的摘要

摘要所返回的内容非常丰富,这里先讨论最重要的一些结果,在 summary 的中间段落。

==============================================================================coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
const          2.4669      0.186     13.230      0.000       2.097       2.837
x1             1.5883      0.032     49.304      0.000       1.524       1.652
==============================================================================
  • coef:回归系数(Regression coefficient),即模型参数 β0、β1、…的估计值。

  • std err :标准差( Standard deviation),也称标准偏差,是方差的算术平方根,反映样本数据值与回归模型估计值之间的平均差异程度 。标准差越大,回归系数越不可靠。

  • t:t 统计量(t-Statistic),等于回归系数除以标准差,用于对每个回归系数分别进行检验,检验每个自变量对因变量的影响是否显著。如果某个自变量 xi的影响不显著,意味着可以从模型中剔除这个自变量。

  • P>|t|:t检验的 P值(Prob(t-Statistic)),反映每个自变量 xi 与因变量 y 的相关性假设的显著性。如果 p<0.05,可以理解为在0.05的显著性水平下变量xi与y存在回归关系,具有显著性。

  • [0.025,0.975]:回归系数的置信区间(Confidence interval)的下限、上限,某个回归系数的置信区间以 95%的置信度包含该回归系数 。注意并不是指样本数据落在这一区间的概率为 95%。

    此外,还有一些重要的指标需要关注:

  • R-squared:R方判定系数(Coefficient of determination),表示所有自变量对因变量的联合的影响程度,用于度量回归方程拟合度的好坏,越接近于 1说明拟合程度越好。

  • F-statistic:F 统计量(F-Statistic),用于对整体回归方程进行显著性检验,检验所有自变量在整体上对因变量的影响是否显著。

Statsmodels 也可以通过属性获取所需的回归分析的数据,例如:

print(“OLS model: Y = b0 + b1 * x”) # b0: 回归直线的截距,b1: 回归直线的斜率
print('Parameters: ', results.params) # 输出:拟合模型的系数
yFit = results.fittedvalues # 拟合模型计算出的 y值
ax.plot(x1, yTest, ‘o’, label=“data”) # 原始数据
ax.plot(x1, yFit, ‘r-’, label=“OLS”) # 拟合数据



3、一元线性回归

3.1 一元线性回归 Python 程序:


# LinearRegression_v1.py
# Linear Regression with statsmodels (OLS: Ordinary Least Squares)
# v1.0: 调用 statsmodels 实现一元线性回归
# 日期:2021-05-04import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
from statsmodels.sandbox.regression.predstd import wls_prediction_std# 主程序 = 关注 Youcans,分享原创系列 https://blog.csdn.net/youcans =
def main():  # 主程序# 生成测试数据:nSample = 100x1 = np.linspace(0, 10, nSample)  # 起点为 0,终点为 10,均分为 nSample个点e = np.random.normal(size=len(x1))  # 正态分布随机数yTrue = 2.36 + 1.58 * x1  #  y = b0 + b1*x1yTest = yTrue + e  # 产生模型数据# 一元线性回归:最小二乘法(OLS)X = sm.add_constant(x1)  # 向矩阵 X 添加截距列(x0=[1,...1])model = sm.OLS(yTest, X)  # 建立最小二乘模型(OLS)results = model.fit()  # 返回模型拟合结果yFit = results.fittedvalues  # 模型拟合的 y值prstd, ivLow, ivUp = wls_prediction_std(results) # 返回标准偏差和置信区间# OLS model: Y = b0 + b1*X + eprint(results.summary())  # 输出回归分析的摘要print("\nOLS model: Y = b0 + b1 * x")  # b0: 回归直线的截距,b1: 回归直线的斜率print('Parameters: ', results.params)  # 输出:拟合模型的系数# 绘图:原始数据点,拟合曲线,置信区间fig, ax = plt.subplots(figsize=(10, 8))ax.plot(x1, yTest, 'o', label="data")  # 原始数据ax.plot(x1, yFit, 'r-', label="OLS")  # 拟合数据ax.plot(x1, ivUp, '--',color='orange',label="upConf")  # 95% 置信区间 上限ax.plot(x1, ivLow, '--',color='orange',label="lowConf")  # 95% 置信区间 下限ax.legend(loc='best')  # 显示图例plt.title('OLS linear regression ')plt.show()return# = 关注 Youcans,分享原创系列 https://blog.csdn.net/youcans =
if __name__ == '__main__': #YouCans, XUPTmain()

3.2 一元线性回归 程序运行结果:

OLS Regression Results                            
==============================================================================
Dep. Variable:                      y   R-squared:                       0.961
Model:                            OLS   Adj. R-squared:                  0.961
Method:                 Least Squares   F-statistic:                     2431.
Date:                Wed, 05 May 2021   Prob (F-statistic):           5.50e-71
Time:                        16:24:22   Log-Likelihood:                -134.62
No. Observations:                 100   AIC:                             273.2
Df Residuals:                      98   BIC:                             278.5
Df Model:                           1                                         
Covariance Type:            nonrobust                                         
==============================================================================coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
const          2.4669      0.186     13.230      0.000       2.097       2.837
x1             1.5883      0.032     49.304      0.000       1.524       1.652
==============================================================================
Omnibus:                        0.070   Durbin-Watson:                   2.016
Prob(Omnibus):                  0.966   Jarque-Bera (JB):                0.187
Skew:                           0.056   Prob(JB):                        0.911
Kurtosis:                       2.820   Cond. No.                         11.7
==============================================================================OLS model: Y = b0 + b1 * x
Parameters:  [2.46688389 1.58832741]


4、多元线性回归

4.1 多元线性回归 Python 程序:


# LinearRegression_v2.py
# Linear Regression with statsmodels (OLS: Ordinary Least Squares)
# v2.0: 调用 statsmodels 实现多元线性回归
# 日期:2021-05-04import numpy as np
import matplotlib.pyplot as plt
import statsmodels.api as sm
from statsmodels.sandbox.regression.predstd import wls_prediction_std# 主程序
def main():  # 主程序# 生成测试数据:nSample = 100x0 = np.ones(nSample)  # 截距列 x0=[1,...1]x1 = np.linspace(0, 20, nSample)  # 起点为 0,终点为 10,均分为 nSample个点x2 = np.sin(x1)x3 = (x1-5)**2X = np.column_stack((x0, x1, x2, x3))  # (nSample,4): [x0,x1,x2,...,xm]beta = [5., 0.5, 0.5, -0.02] # beta = [b1,b2,...,bm]yTrue = np.dot(X, beta)  # 向量点积 y = b1*x1 + ...+ bm*xmyTest = yTrue + 0.5 * np.random.normal(size=nSample)  # 产生模型数据# 多元线性回归:最小二乘法(OLS)model = sm.OLS(yTest, X)  # 建立 OLS 模型: Y = b0 + b1*X + ... + bm*Xm + eresults = model.fit()  # 返回模型拟合结果yFit = results.fittedvalues  # 模型拟合的 y值print(results.summary())  # 输出回归分析的摘要print("\nOLS model: Y = b0 + b1*X + ... + bm*Xm")print('Parameters: ', results.params)  # 输出:拟合模型的系数    # 绘图:原始数据点,拟合曲线,置信区间prstd, ivLow, ivUp = wls_prediction_std(results) # 返回标准偏差和置信区间fig, ax = plt.subplots(figsize=(10, 8))ax.plot(x1, yTest, 'o', label="data")  # 实验数据(原始数据+误差)ax.plot(x1, yTrue, 'b-', label="True")  # 原始数据ax.plot(x1, yFit, 'r-', label="OLS")  # 拟合数据ax.plot(x1, ivUp, '--',color='orange', label="ConfInt")  # 置信区间 上届ax.plot(x1, ivLow, '--',color='orange')  # 置信区间 下届ax.legend(loc='best')  # 显示图例plt.xlabel('x')plt.ylabel('y')plt.show()return#= 关注 Youcans,分享原创系列 https://blog.csdn.net/youcans =
if __name__ == '__main__':main()

4.2 多元线性回归 程序运行结果:

OLS Regression Results                            
==============================================================================
Dep. Variable:                      y   R-squared:                       0.932
Model:                            OLS   Adj. R-squared:                  0.930
Method:                 Least Squares   F-statistic:                     440.0
Date:                Thu, 06 May 2021   Prob (F-statistic):           6.04e-56
Time:                        10:38:51   Log-Likelihood:                -68.709
No. Observations:                 100   AIC:                             145.4
Df Residuals:                      96   BIC:                             155.8
Df Model:                           3                                         
Covariance Type:            nonrobust                                         
==============================================================================coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
const          5.0411      0.120     41.866      0.000       4.802       5.280
x1             0.4894      0.019     26.351      0.000       0.452       0.526
x2             0.5158      0.072      7.187      0.000       0.373       0.658
x3            -0.0195      0.002    -11.957      0.000      -0.023      -0.016
==============================================================================
Omnibus:                        1.472   Durbin-Watson:                   1.824
Prob(Omnibus):                  0.479   Jarque-Bera (JB):                1.194
Skew:                           0.011   Prob(JB):                        0.551
Kurtosis:                       2.465   Cond. No.                         223.
==============================================================================OLS model: Y = b0 + b1*X + ... + bm*Xm
Parameters:  [ 5.04111867  0.4893574   0.51579806 -0.01951219]

在这里插入图片描述



5、附录:回归结果详细说明

    Dep.Variable: y 因变量Model:OLS 最小二乘模型Method: Least Squares 最小二乘No. Observations: 样本数据的数量Df Residuals:残差自由度(degree of freedom of residuals)Df Model:模型自由度(degree of freedom of model)Covariance Type:nonrobust 协方差阵的稳健性R-squared:R 判定系数Adj. R-squared: 修正的判定系数F-statistic: 统计检验 F 统计量Prob (F-statistic): F检验的 P值Log likelihood: 对数似然coef:自变量和常数项的系数,b1,b2,...bm,b0std err:系数估计的标准误差t:统计检验 t 统计量P>|t|:t 检验的 P值[0.025, 0.975]:估计参数的 95%置信区间的下限和上限Omnibus:基于峰度和偏度进行数据正态性的检验Prob(Omnibus):基于峰度和偏度进行数据正态性的检验概率Durbin-Watson:检验残差中是否存在自相关Skewness:偏度,反映数据分布的非对称程度Kurtosis:峰度,反映数据分布陡峭或平滑程度Jarque-Bera(JB):基于峰度和偏度对数据正态性的检验Prob(JB):Jarque-Bera(JB)检验的 P值。Cond. No.:检验变量之间是否存在精确相关关系或高度相关关系。


版权说明:
YouCans 原创作品
Copyright 2021 YouCans, XUPT
Crated:2021-05-05


欢迎关注 Youcans 原创系列,每周更新数模笔记

Python数模笔记-PuLP库(1)线性规划入门
Python数模笔记-PuLP库(2)线性规划进阶
Python数模笔记-PuLP库(3)线性规划实例
Python数模笔记-NetworkX(1)图的操作
Python数模笔记-NetworkX(2)最短路径
Python数模笔记-NetworkX(3)条件最短路径
Python数模笔记-StatsModels 统计回归(1)简介
Python数模笔记-StatsModels 统计回归(2)线性回归
Python数模笔记-StatsModels 统计回归(3)模型数据的准备
Python数模笔记-StatsModels 统计回归(4)可视化
Python数模笔记-Sklearn (1)介绍
Python数模笔记-Sklearn (2)聚类分析
Python数模笔记-Sklearn (3)主成分分析
Python数模笔记-Sklearn (4)线性回归
Python数模笔记-Sklearn (5)支持向量机
Python数模笔记-模拟退火算法(1)多变量函数优化
Python数模笔记-模拟退火算法(2)约束条件的处理
Python数模笔记-模拟退火算法(3)整数规划问题
Python数模笔记-模拟退火算法(4)旅行商问题

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/566173.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python数模笔记-StatsModels 统计回归(3)模型数据的准备

1、读取数据文件 回归分析问题所用的数据都是保存在数据文件中的&#xff0c;首先就要从数据文件读取数据。 数据文件的格式很多&#xff0c;最常用的是 .csv&#xff0c;.xls 和 .txt 文件&#xff0c;以及 sql 数据库文件的读取 。 欢迎关注 Youcans 原创系列&#xff0c;每…

神经网络反向传导算法

假设我们有一个固定样本集 &#xff0c;它包含 个样例。我们可以用批量梯度下降法来求解神经网络。具体来讲&#xff0c;对于单个样例 &#xff0c;其代价函数为&#xff1a; 这是一个&#xff08;二分之一的&#xff09;方差代价函数。给定一个包含 个样例的数据集&#xff…

Python数模笔记-StatsModels 统计回归(4)可视化

1、如何认识可视化&#xff1f; 图形总是比数据更加醒目、直观。解决统计回归问题&#xff0c;无论在分析问题的过程中&#xff0c;还是在结果的呈现和发表时&#xff0c;都需要可视化工具的帮助和支持。  欢迎关注 Youcans 原创系列&#xff0c;每周更新数模笔记 Python数…

梯度检验与高级优化

众所周知&#xff0c;反向传播算法很难调试得到正确结果&#xff0c;尤其是当实现程序存在很多难于发现的bug时。举例来说&#xff0c;索引的缺位错误&#xff08;off-by-one error&#xff09;会导致只有部分层的权重得到训练&#xff0c;再比如忘记计算偏置项。这些错误会使你…

Python数模笔记-Sklearn (1)介绍

1、SKlearn 是什么 Sklearn&#xff08;全称 SciKit-Learn&#xff09;&#xff0c;是基于 Python 语言的机器学习工具包。 Sklearn 主要用Python编写&#xff0c;建立在 Numpy、Scipy、Pandas 和 Matplotlib 的基础上&#xff0c;也用 Cython编写了一些核心算法来提高性能。…

自编码算法与稀疏性

目前为止&#xff0c;我们已经讨论了神经网络在有监督学习中的应用。在有监督学习中&#xff0c;训练样本是有类别标签的。现在假设我们只有一个没有带类别标签的训练样本集合 &#xff0c;其中 。自编码神经网络是一种无监督学习算法&#xff0c;它使用了反向传播算法&#…

Python数模笔记-Sklearn(2)聚类分析

1、分类的分类 分类的分类&#xff1f;没错&#xff0c;分类也有不同的种类&#xff0c;而且在数学建模、机器学习领域常常被混淆。 首先我们谈谈有监督学习&#xff08;Supervised learning&#xff09;和无监督学习&#xff08;Unsupervised learning&#xff09;&#xff…

可视化自编码器训练结果

训练完&#xff08;稀疏&#xff09;自编码器&#xff0c;我们还想把这自编码器学到的函数可视化出来&#xff0c;好弄明白它到底学到了什么。我们以在1010图像&#xff08;即n100&#xff09;上训练自编码器为例。在该自编码器中&#xff0c;每个隐藏单元i对如下关于输入的函数…

Python数模笔记-Sklearn(3)主成分分析

主成分分析&#xff08;Principal Components Analysis&#xff0c;PCA&#xff09;是一种数据降维技术&#xff0c;通过正交变换将一组相关性高的变量转换为较少的彼此独立、互不相关的变量&#xff0c;从而减少数据的维数。 1、数据降维 1.1 为什么要进行数据降维&#xff1…

稀疏自编码器一览表

下面是我们在推导sparse autoencoder时使用的符号一览表&#xff1a; 符号含义训练样本的输入特征&#xff0c;.输出值/目标值. 这里 可以是向量. 在autoencoder中&#xff0c;.第 个训练样本输入为 时的假设输出&#xff0c;其中包含参数 . 该输出应当与目标值 具有相同的…

Python数模笔记-Sklearn(4)线性回归

1、什么是线性回归&#xff1f; 回归分析&#xff08;Regression analysis)是一种统计分析方法&#xff0c;研究自变量和因变量之间的定量关系。回归分析不仅包括建立数学模型并估计模型参数&#xff0c;检验数学模型的可信度&#xff0c;也包括利用建立的模型和估计的模型参数…

Python数模笔记-Sklearn(5)支持向量机

支持向量机&#xff08;Support vector machine, SVM&#xff09;是一种二分类模型&#xff0c;是按有监督学习方式对数据进行二元分类的广义线性分类器。 支持向量机经常应用于模式识别问题&#xff0c;如人像识别、文本分类、手写识别、生物信息识别等领域。 1、支持向量机&…

矢量化编程

当使用学习算法时&#xff0c;一段更快的代码通常意味着项目进展更快。例如&#xff0c;如果你的学习算法需要花费20分钟运行完成&#xff0c;这意味着你每个小时能“尝试”3个新主意。但是假如你的程序需要20个小时来运行&#xff0c;这意味着你一天只能“尝试”一个新主意&am…

Python数模笔记-NetworkX(1)图的操作

1、NetworkX 图论与网络工具包 NetworkX 是基于 Python 语言的图论与复杂网络工具包&#xff0c;用于创建、操作和研究复杂网络的结构、动力学和功能。 NetworkX 可以以标准和非标准的数据格式描述图与网络&#xff0c;生成图与网络&#xff0c;分析网络结构&#xff0c;构建…

逻辑回归的向量化实现样例

逻辑回归的向量化实现样例 我们想用批量梯度上升法对logistic回归分析模型进行训练&#xff0c;其模型如下&#xff1a; 让我们遵从公开课程视频与CS229教学讲义的符号规范&#xff0c;设 &#xff0c;于是 &#xff0c;&#xff0c; 为截距。假设我们有m个训练样本{(, ) ,...…

Python数模笔记-NetworkX(2)最短路径

1、最短路径问题的常用算法 最短路径问题是图论研究中的经典算法问题&#xff0c;用于计算图中一个顶点到另一个顶点的最短路径。 欢迎关注 Youcans 原创系列&#xff0c;每周更新数模笔记 Python数模笔记-PuLP库 Python数模笔记-StatsModels统计回归 Python数模笔记-Sklearn…

神经网络向量化

神经网络向量化 在本节&#xff0c;我们将引入神经网络的向量化版本。在前面关于神经网络介绍的章节中&#xff0c;我们已经给出了一个部分向量化的实现&#xff0c;它在一次输入一个训练样本时是非常有效率的。下边我们看看如何实现同时处理多个训练样本的算法。具体来讲&…

Python数模笔记-NetworkX(3)条件最短路径

1、带有条件约束的最短路径问题 最短路径问题是图论中求两个顶点之间的最短路径问题&#xff0c;通常是求最短加权路径。 条件最短路径&#xff0c;指带有约束条件、限制条件的最短路径。例如&#xff0c;顶点约束&#xff0c;包括必经点或禁止点的限制&#xff1b;边的约束&…

简单技能之程序调试入门

简单技能之程序调试入门 黑盒测试 等价类划分