神经网络概述

神经网络概述

以监督学习为例,假设我们有训练样本集 \textstyle (x(^ i),y(^ i)) ,那么神经网络算法能够提供一种复杂且非线性的假设模型 \textstyle h_{W,b}(x) ,它具有参数 \textstyle W, b ,可以以此参数来拟合我们的数据。


为了描述神经网络,我们先从最简单的神经网络讲起,这个神经网络仅由一个“神经元”构成,以下即是这个“神经元”的图示:

SingleNeuron.png


这个“神经元”是一个以 \textstyle x_1, x_2, x_3 及截距 \textstyle +1 为输入值的运算单元,其输出为 \textstyle  h_{W,b}(x) = f(W^Tx) = f(\sum_{i=1}^3 W_{i}x_i +b) ,其中函数 \textstyle f : \Re \mapsto \Re 被称为“激活函数”。在本教程中,我们选用sigmoid函数作为激活函数 \textstyle f(\cdot)

f(z) = \frac{1}{1+\exp(-z)}.

可以看出,这个单一“神经元”的输入-输出映射关系其实就是一个逻辑回归(logistic regression)。


虽然本系列教程采用sigmoid函数,但你也可以选择双曲正切函数(tanh):


f(z) = \tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}},

以下分别是sigmoid及tanh的函数图像

Sigmoid activation function. Tanh activation function.

\textstyle \tanh(z) 函数是sigmoid函数的一种变体,它的取值范围为 \textstyle [-1,1] ,而不是sigmoid函数的 \textstyle [0,1] 。


注意,与其它地方(包括OpenClassroom公开课以及斯坦福大学CS229课程)不同的是,这里我们不再令 \textstyle x_0=1 。取而代之,我们用单独的参数 \textstyle b 来表示截距。


最后要说明的是,有一个等式我们以后会经常用到:如果选择 \textstyle f(z) = 1/(1+\exp(-z)) ,也就是sigmoid函数,那么它的导数就是 \textstyle f'(z) = f(z) (1-f(z)) (如果选择tanh函数,那它的导数就是 \textstyle f'(z) = 1- (f(z))^2 ,你可以根据sigmoid(或tanh)函数的定义自行推导这个等式。


神经网络模型

所谓神经网络就是将许多个单一“神经元”联结在一起,这样,一个“神经元”的输出就可以是另一个“神经元”的输入。例如,下图就是一个简单的神经网络:

Network331.png

我们使用圆圈来表示神经网络的输入,标上“\textstyle +1”的圆圈被称为偏置节点,也就是截距项。神经网络最左边的一层叫做输入层,最右的一层叫做输出层(本例中,输出层只有一个节点)。中间所有节点组成的一层叫做隐藏层,因为我们不能在训练样本集中观测到它们的值。同时可以看到,以上神经网络的例子中有3个输入单元(偏置单元不计在内),3个隐藏单元及一个输出单元


我们用 \textstyle {n}_l 来表示网络的层数,本例中 \textstyle n_l=3 ,我们将第 \textstyle l 层记为 \textstyle L_l ,于是 \textstyle L_1 是输入层,输出层是 \textstyle L_{n_l} 。本例神经网络有参数 \textstyle (W,b) = (W^{(1)}, b^{(1)}, W^{(2)}, b^{(2)}) ,其中 \textstyle W^{(l)}_{ij} (下面的式子中用到)是第 \textstyle l 层第 \textstyle j 单元与第 \textstyle l+1 层第 \textstyle i 单元之间的联接参数(其实就是连接线上的权重,注意标号顺序), \textstyle b^{(l)}_i 是第 \textstyle l+1 层第 \textstyle i 单元的偏置项。因此在本例中, \textstyle W^{(1)} \in \Re^{3\times 3} , \textstyle W^{(2)} \in \Re^{1\times 3} 。注意,没有其他单元连向偏置单元(即偏置单元没有输入),因为它们总是输出 \textstyle +1。同时,我们用 \textstyle s_l 表示第 \textstyle l 层的节点数(偏置单元不计在内)。


我们用 \textstyle a^{(l)}_i 表示第 \textstyle l 层第 \textstyle i 单元的激活值(输出值)。当 \textstyle l=1 时, \textstyle a^{(1)}_i = x_i ,也就是第 \textstyle i 个输入值(输入值的第 \textstyle i 个特征)。对于给定参数集合 \textstyle W,b ,我们的神经网络就可以按照函数 \textstyle h_{W,b}(x) 来计算输出结果。本例神经网络的计算步骤如下:


 \begin{align}a_1^{(2)} &= f(W_{11}^{(1)}x_1 + W_{12}^{(1)} x_2 + W_{13}^{(1)} x_3 + b_1^{(1)})  \\a_2^{(2)} &= f(W_{21}^{(1)}x_1 + W_{22}^{(1)} x_2 + W_{23}^{(1)} x_3 + b_2^{(1)})  \\a_3^{(2)} &= f(W_{31}^{(1)}x_1 + W_{32}^{(1)} x_2 + W_{33}^{(1)} x_3 + b_3^{(1)})  \\h_{W,b}(x) &= a_1^{(3)} =  f(W_{11}^{(2)}a_1^{(2)} + W_{12}^{(2)} a_2^{(2)} + W_{13}^{(2)} a_3^{(2)} + b_1^{(2)}) \end{align}


我们用 \textstyle z^{(l)}_i 表示第 \textstyle l 层第 \textstyle i 单元输入加权和(包括偏置单元),比如, \textstyle  z_i^{(2)} = \sum_{j=1}^n W^{(1)}_{ij} x_j + b^{(1)}_i ,则 \textstyle a^{(l)}_i = f(z^{(l)}_i) 。


这样我们就可以得到一种更简洁的表示法。这里我们将激活函数 \textstyle f(\cdot) 扩展为用向量(分量的形式)来表示,即 \textstyle f([z_1, z_2, z_3]) = [f(z_1), f(z_2), f(z_3)] ,那么,上面的等式可以更简洁地表示为:


\begin{align}z^{(2)} &= W^{(1)} x + b^{(1)} \\a^{(2)} &= f(z^{(2)}) \\z^{(3)} &= W^{(2)} a^{(2)} + b^{(2)} \\h_{W,b}(x) &= a^{(3)} = f(z^{(3)})\end{align}


我们将上面的计算步骤叫作前向传播。回想一下,之前我们用 \textstyle a^{(1)} = x 表示输入层的激活值,那么给定第 \textstyle l 层的激活值 \textstyle a^{(l)} 后,第 \textstyle l+1 层的激活值 \textstyle a^{(l+1)} 就可以按照下面步骤计算得到:


 \begin{align}z^{(l+1)} &= W^{(l)} a^{(l)} + b^{(l)}   \\a^{(l+1)} &= f(z^{(l+1)})\end{align}


将参数矩阵化,使用矩阵-向量运算方式,我们就可以利用线性代数的优势对神经网络进行快速求解。


目前为止,我们讨论了一种神经网络,我们也可以构建另一种结构的神经网络(这里结构指的是神经元之间的联接模式),也就是包含多个隐藏层的神经网络。最常见的一个例子是 \textstyle  n_l 层的神经网络,第 \textstyle  1 层是输入层,第 \textstyle  n_l 层是输出层,中间的每个层 \textstyle  l 与层 \textstyle  l+1 紧密相联。这种模式下,要计算神经网络的输出结果,我们可以按照之前描述的等式,按部就班,进行前向传播,逐一计算第 \textstyle  L_2 层的所有激活值,然后是第 \textstyle  L_3 层的激活值,以此类推,直到第 \textstyle  L_{n_l} 层。这是一个前馈神经网络的例子,因为这种联接图没有闭环或回路。


神经网络也可以有多个输出单元。比如,下面的神经网络有两层隐藏层: \textstyle L_2 及 \textstyle L_3 ,输出层 \textstyle L_4 有两个输出单元。


Network3322.png


要求解这样的神经网络,需要样本集 \textstyle (x^{(i)}, y^{(i)}) ,其中 \textstyle y^{(i)} \in \Re^2 。如果你想预测的输出是多个的,那这种神经网络很适用。(比如,在医疗诊断应用中,患者的体征指标就可以作为向量的输入值,而不同的输出值 \textstyle y_i 可以表示不同的疾病存在与否。)


中英文对照

neural networks 神经网络

activation function 激活函数

hyperbolic tangent 双曲正切函数

bias units 偏置项

activation 激活值

forward propagation 前向传播

feedforward neural network 前馈神经网络(参照Mitchell的《机器学习》的翻译)


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/566175.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python数模笔记-StatsModels 统计回归(2)线性回归

1、背景知识 1.1 插值、拟合、回归和预测 插值、拟合、回归和预测,都是数学建模中经常提到的概念,而且经常会被混为一谈。 插值,是在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。 插值是离散函数…

Python数模笔记-StatsModels 统计回归(3)模型数据的准备

1、读取数据文件 回归分析问题所用的数据都是保存在数据文件中的,首先就要从数据文件读取数据。 数据文件的格式很多,最常用的是 .csv,.xls 和 .txt 文件,以及 sql 数据库文件的读取 。 欢迎关注 Youcans 原创系列,每…

神经网络反向传导算法

假设我们有一个固定样本集 ,它包含 个样例。我们可以用批量梯度下降法来求解神经网络。具体来讲,对于单个样例 ,其代价函数为: 这是一个(二分之一的)方差代价函数。给定一个包含 个样例的数据集&#xff…

Python数模笔记-StatsModels 统计回归(4)可视化

1、如何认识可视化? 图形总是比数据更加醒目、直观。解决统计回归问题,无论在分析问题的过程中,还是在结果的呈现和发表时,都需要可视化工具的帮助和支持。  欢迎关注 Youcans 原创系列,每周更新数模笔记 Python数…

梯度检验与高级优化

众所周知,反向传播算法很难调试得到正确结果,尤其是当实现程序存在很多难于发现的bug时。举例来说,索引的缺位错误(off-by-one error)会导致只有部分层的权重得到训练,再比如忘记计算偏置项。这些错误会使你…

Python数模笔记-Sklearn (1)介绍

1、SKlearn 是什么 Sklearn(全称 SciKit-Learn),是基于 Python 语言的机器学习工具包。 Sklearn 主要用Python编写,建立在 Numpy、Scipy、Pandas 和 Matplotlib 的基础上,也用 Cython编写了一些核心算法来提高性能。…

自编码算法与稀疏性

目前为止,我们已经讨论了神经网络在有监督学习中的应用。在有监督学习中,训练样本是有类别标签的。现在假设我们只有一个没有带类别标签的训练样本集合 ,其中 。自编码神经网络是一种无监督学习算法,它使用了反向传播算法&#…

Python数模笔记-Sklearn(2)聚类分析

1、分类的分类 分类的分类?没错,分类也有不同的种类,而且在数学建模、机器学习领域常常被混淆。 首先我们谈谈有监督学习(Supervised learning)和无监督学习(Unsupervised learning)&#xff…

可视化自编码器训练结果

训练完(稀疏)自编码器,我们还想把这自编码器学到的函数可视化出来,好弄明白它到底学到了什么。我们以在1010图像(即n100)上训练自编码器为例。在该自编码器中,每个隐藏单元i对如下关于输入的函数…

Python数模笔记-Sklearn(3)主成分分析

主成分分析(Principal Components Analysis,PCA)是一种数据降维技术,通过正交变换将一组相关性高的变量转换为较少的彼此独立、互不相关的变量,从而减少数据的维数。 1、数据降维 1.1 为什么要进行数据降维&#xff1…

稀疏自编码器一览表

下面是我们在推导sparse autoencoder时使用的符号一览表: 符号含义训练样本的输入特征,.输出值/目标值. 这里 可以是向量. 在autoencoder中,.第 个训练样本输入为 时的假设输出,其中包含参数 . 该输出应当与目标值 具有相同的…

Python数模笔记-Sklearn(4)线性回归

1、什么是线性回归? 回归分析(Regression analysis)是一种统计分析方法,研究自变量和因变量之间的定量关系。回归分析不仅包括建立数学模型并估计模型参数,检验数学模型的可信度,也包括利用建立的模型和估计的模型参数…

Python数模笔记-Sklearn(5)支持向量机

支持向量机(Support vector machine, SVM)是一种二分类模型,是按有监督学习方式对数据进行二元分类的广义线性分类器。 支持向量机经常应用于模式识别问题,如人像识别、文本分类、手写识别、生物信息识别等领域。 1、支持向量机&…

矢量化编程

当使用学习算法时,一段更快的代码通常意味着项目进展更快。例如,如果你的学习算法需要花费20分钟运行完成,这意味着你每个小时能“尝试”3个新主意。但是假如你的程序需要20个小时来运行,这意味着你一天只能“尝试”一个新主意&am…

Python数模笔记-NetworkX(1)图的操作

1、NetworkX 图论与网络工具包 NetworkX 是基于 Python 语言的图论与复杂网络工具包,用于创建、操作和研究复杂网络的结构、动力学和功能。 NetworkX 可以以标准和非标准的数据格式描述图与网络,生成图与网络,分析网络结构,构建…

逻辑回归的向量化实现样例

逻辑回归的向量化实现样例 我们想用批量梯度上升法对logistic回归分析模型进行训练,其模型如下: 让我们遵从公开课程视频与CS229教学讲义的符号规范,设 ,于是 ,, 为截距。假设我们有m个训练样本{(, ) ,...…

Python数模笔记-NetworkX(2)最短路径

1、最短路径问题的常用算法 最短路径问题是图论研究中的经典算法问题,用于计算图中一个顶点到另一个顶点的最短路径。 欢迎关注 Youcans 原创系列,每周更新数模笔记 Python数模笔记-PuLP库 Python数模笔记-StatsModels统计回归 Python数模笔记-Sklearn…

神经网络向量化

神经网络向量化 在本节,我们将引入神经网络的向量化版本。在前面关于神经网络介绍的章节中,我们已经给出了一个部分向量化的实现,它在一次输入一个训练样本时是非常有效率的。下边我们看看如何实现同时处理多个训练样本的算法。具体来讲&…

Python数模笔记-NetworkX(3)条件最短路径

1、带有条件约束的最短路径问题 最短路径问题是图论中求两个顶点之间的最短路径问题,通常是求最短加权路径。 条件最短路径,指带有约束条件、限制条件的最短路径。例如,顶点约束,包括必经点或禁止点的限制;边的约束&…