报告 | 2019年全球数字化转型现状研究报告

640?wx_fmt=jpeg

来源:Prophet


2019年,战略数字化转型的重要性已经不止于IT领域,而影响着全公司的竞争力。企业的相关预算直线攀升,利益相关方所关注的颠覆性技术数量急剧增加。数字化项目开始由首席高管主导,并由相互协作的跨职能团队管理。



数字化是整个企业范围内的优先战略事项


我们的年度《数字化转型现状》研究迎来第五个年头,继续记录企业的不断发展。随着颠覆性技术及其对各大企业和市场的影响力不断加大,我们的研究旨在捕捉促成现代数字化转型的变化和趋势。


2019年,战略数字化转型的重要性已经不止于IT领域,而影响着全公司的竞争力。企业的相关预算直线攀升,利益相关方所关注的颠覆性技术数量急剧增加。数字化项目开始由首席高管主导,并由相互协作的跨职能团队管理。客户体验 (CX) 继续占据数字化转型投资的主要份额,但在2017年,我们注意到员工体验和企业文化在赋能和加速变革、增长和创新方面也愈发重要。



数字化转型是影响全公司的革新行动


今年,数字化转型显然更为成熟,已成为企业级行动。数字化转型促进企业实现运营和竞争现代化的同时,也帮助他们有效适应瞬息万变的数字化经济,不断谋求发展。


总体来说,企业显然还有许多工作要做,因为他们中的大部分仍旧将技术的优先级排在把握住影响市场的颠覆性趋势之上,这些趋势具体而言,就是客户和员工的行为及期望。



全球数字化转型现状:5大要点


成功的数字化转型是全企业举措,领导者最好要有开阔的组织视野。首席信息官 (CIO) 连续第二年成为最常负责或支持数字化转型倡议 (28%) 的人物,而首席执行官 (CEO) 则日益发挥领导作用 (23%)。


市场压力是促进数字化转型的主要因素,大多数举措受成长机会 (51%) 和白热化的竞争压力 (41%) 推动。每每登上头条的数据泄露丑闻及GDPR 等新监管标准也促进着企业转型 (38%)。


尽管大家逐渐意识到人为因素在数字化转型进程中所发挥的重要作用,例如:员工体验和企业文化,大多数转型举措仍继续着眼于客户接触点的现代化 (54%) 和基础设施的加强 (45%)。但许多企业却没有通过尽职调研以理解他们的客户,有 41% 的企业在没有进行全面客户调研的情况下,便对数字化转型作了投资。


对于领导数字化转型工作的人员来说,获得企业支持依然是最大的挑战。在我们所研究的公司中,数字化转型通常被视为成本中心 (28%),ROI 也难以通过数据进行证明 (29%)。内部文化问题也是大难题,内部根深蒂固的观点、对于变革的抵制(26%) 及对法律和合规的忧虑 (26%) 都在妨碍着数字化转型的进程。


创新在企业内仍占据一席之地。近一半的受访者表示他们在营造创新文化,拥有内部创新团队正成为常态。


640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg

640?wx_fmt=jpeg


未来智能实验室是人工智能学家与科学院相关机构联合成立的人工智能,互联网和脑科学交叉研究机构。


未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。


  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”


640?wx_fmt=jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/491697.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Android调用binder实现权限提升-android学习之旅(81)

当进程A权限较低,而B权限较高时,容易产生提权漏洞 fuzz测试的测试路径 First level Interface是服务 Second level Interface是服务中对应的接口 1.首先获取第一层和第二层接口,及服务以及对应服务提供的接口 2.根据以上信息结合参数类型信息…

PyTorch框架学习九——网络模型的构建

PyTorch框架学习九——网络模型的构建一、概述二、nn.Module三、模型容器Container1.nn.Sequential2.nn.ModuleList3.nn.ModuleDict()4.总结笔记二到八主要介绍与数据有关的内容,这次笔记将开始介绍网络模型有关的内容,首先我们不追求网络内部各层的具体…

中国17种稀土有啥军事用途?没它们,美军技术优势将归零

来源:陶慕剑观察 稀土就是化学元素周期表中镧系元素——镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu),再加上钪(Sc)和钇(Y)共17种元素。中国稀土占据着众多的世界第一&…

PyTorch框架学习十——基础网络层(卷积、转置卷积、池化、反池化、线性、激活函数)

PyTorch框架学习十——基础网络层(卷积、转置卷积、池化、反池化、线性、激活函数)一、卷积层二、转置卷积层三、池化层1.最大池化nn.MaxPool2d2.平均池化nn.AvgPool2d四、反池化层最大值反池化nn.MaxUnpool2d五、线性层六、激活函数层1.nn.Sigmoid2.nn.…

PyTorch框架学习十一——网络层权值初始化

PyTorch框架学习十一——网络层权值初始化一、均匀分布初始化二、正态分布初始化三、常数初始化四、Xavier 均匀分布初始化五、Xavier正态分布初始化六、kaiming均匀分布初始化前面的笔记介绍了网络模型的搭建,这次将介绍网络层权值的初始化,适当的初始化…

W3C 战败:无权再制定 HTML 和 DOM 标准!

来源:CSDN历史性时刻!——近日,W3C正式宣告战败:HTML和DOM标准制定权将全权移交给浏览器厂商联盟WHATWG。由苹果、Google、微软和Mozilla四大浏览器厂商组成的WHATWG已经与万维网联盟(World Wide Web Consortium&#…

PyTorch框架学习十二——损失函数

PyTorch框架学习十二——损失函数一、损失函数的作用二、18种常见损失函数简述1.L1Loss(MAE)2.MSELoss3.SmoothL1Loss4.交叉熵CrossEntropyLoss5.NLLLoss6.PoissonNLLLoss7.KLDivLoss8.BCELoss9.BCEWithLogitsLoss10.MarginRankingLoss11.HingeEmbedding…

化合物半导体的机遇

来源:国盛证券半导体材料可分为单质半导体及化合物半导体两类,前者如硅(Si)、锗(Ge)等所形成的半导体,后者为砷化镓(GaAs)、氮化镓(GaN)、碳化硅(…

PyTorch框架学习十三——优化器

PyTorch框架学习十三——优化器一、优化器二、Optimizer类1.基本属性2.基本方法三、学习率与动量1.学习率learning rate2.动量、冲量Momentum四、十种常见的优化器(简单罗列)上次笔记简单介绍了一下损失函数的概念以及18种常用的损失函数,这次…

最全芯片产业报告出炉,计算、存储、模拟IC一文扫尽

来源:智东西最近几年, 半导体产业风起云涌。 一方面, 中国半导体异军突起, 另一方面, 全球产业面临超级周期,加上人工智能等新兴应用的崛起,中美科技摩擦频发,全球半导体现状如何&am…

python向CSV文件写内容

f open(r"D:\test.csv", w) f.write(1,2,3\n) f.write(4,5,6\n) f.close() 注意:上面例子中的123456这6个数字会分别写入不同的单元格里,即以逗号作为分隔符将字符串内容分开放到不同单元格 上面例子的图: 如果要把变量的值放入…

PyTorch框架学习十四——学习率调整策略

PyTorch框架学习十四——学习率调整策略一、_LRScheduler类二、六种常见的学习率调整策略1.StepLR2.MultiStepLR3.ExponentialLR4.CosineAnnealingLR5.ReduceLRonPlateau6.LambdaLR在上次笔记优化器的内容中介绍了学习率的概念,但是在整个训练过程中学习率并不是一直…

JavaScript数组常用方法

转载于:https://www.cnblogs.com/kenan9527/p/4926145.html

蕨叶形生物刷新生命史,动物界至少起源于5.7亿年前

来源 :newsweek.com根据发表于《古生物学》期刊(Palaeontology)的一项研究,动物界可能比科学界所知更加古老。研究人员发现,一种名为“美妙春光虫”(Stromatoveris psygmoglena)的海洋生物在埃迪…

PyTorch框架学习十五——可视化工具TensorBoard

PyTorch框架学习十五——可视化工具TensorBoard一、TensorBoard简介二、TensorBoard安装及测试三、TensorBoard的使用1.add_scalar()2.add_scalars()3.add_histogram()4.add_image()5.add_graph()之前的笔记介绍了模型训练中的数据、模型、损失函数和优化器,下面将介…

CNN、RNN、DNN的内部网络结构有什么区别?

来源:AI量化百科神经网络技术起源于上世纪五、六十年代,当时叫感知机(perceptron),拥有输入层、输出层和一个隐含层。输入的特征向量通过隐含层变换达到输出层,在输出层得到分类结果。早期感知机的推动者是…

L2级自动驾驶量产趋势解读

来源:《国盛计算机组》L2 级自动驾驶离我们比想象的更近。18 年下半年部分 L2 车型已面世,凯迪拉克、吉利、长城、长安、上汽等均已推出了 L2 自动驾驶车辆。国内目前在售2872个车型,L2级功能渗透率平均超过25%,豪华车甚至超过了6…

PyTorch框架学习十六——正则化与Dropout

PyTorch框架学习十六——正则化与Dropout一、泛化误差二、L2正则化与权值衰减三、正则化之Dropout补充:这次笔记主要关注防止模型过拟合的两种方法:正则化与Dropout。 一、泛化误差 一般模型的泛化误差可以被分解为三部分:偏差、方差与噪声…

HDU 5510 Bazinga 暴力匹配加剪枝

Bazinga Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid5510 Description Ladies and gentlemen, please sit up straight.Dont tilt your head. Im serious.For n given strings S1,S2,⋯,Sn, labelled from 1 to n, you shou…

PyTorch框架学习十七——Batch Normalization

PyTorch框架学习十七——Batch Normalization一、BN的概念二、Internal Covariate Shift(ICS)三、BN的一个应用案例四、PyTorch中BN的实现1._BatchNorm类2.nn.BatchNorm1d/2d/3d(1)nn.BatchNorm1d(2)nn.Bat…