转自https://blog.csdn.net/lyc_yongcai/article/details/73467480
TensorFlow 中有三种启动图的方法:tf.Session(),tf.InteractivesSession(),tf.train.Supervisor().managed_session()
它们各自的用法如下:
(1)tf.Session():构造阶段完成后, 才能启动图。启动图的第一步是创建一个 Session
对象, 如果无任何创建参数, 会话构造器将启动默认图。
(2)tf.InteractivesSession():为了便于使用诸如 IPython之类的 Python 交互环境, 可以使用InteractiveSession 代替 Session 类, 使用 Tensor.eval()和 Operation.run()方法代替Session.run(). 这样可以避免使用一个变量来持有会话。
import tensorflow as tfmatrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.], [2.]])preduct = tf.matmul(matrix1, matrix2)sess_ = tf.InteractiveSession()
tf.global_variables_initializer().run()
print preduct.eval()sess_.close()
(3)tf.train.Supervisor().managed_session() :
与上面两种启动图相比较来说,Supervisor() 帮助我们处理一些事情:
(a) 自动去 checkpoint 加载数据或者初始化数据
(b)自动有一个 Saver ,可以用来保存 checkpoint
eg: sv.saver.save(sess, save_path)
(c) 有一个 summary_computed 用来保存 Summary
因此我们可以省略了以下内容:
(a)手动初始化或者从 checkpoint 中加载数据
(b)不需要创建 Saver 类, 使用 sv 内部的就可以
(c)不需要创建 Summary_Writer()
import tensorflow as tfa = tf.Variable(1)
b = tf.Variable(2)
c = tf.add(a, b)update = tf.assign(a, c)init = tf.global_variables_initializer()sv = tf.train.Supervisor(logdir="./tmp/", init_op=init)
saver = sv.saver
with sv.managed_session() as sess:for i in range(1000):update_ = sess.run(update)#print("11111", update)if i % 100 == 0:sv.saver.save(sess, "./tmp/", global_step=i)