Educational Codeforces Round 101 (Rated for Div. 2) D. Ceil Divisions 思维 + 根号数

传送门

题意: 给一个数组ai=ia_i=iai=i,每次可以进行操作ax=⌈axay⌉a_x=\left \lceil \frac{a_x}{a_y} \right \rceilax=ayax,操作不能超过n+5n+5n+5次,最终需要把数组中的数变成n−1n-1n1111和一个222

思路: 比较显然的是数组中原来的111222是不需要操作的,可以把222当做最终的222,让后可以以ana_nan为分母,让前面>2>2>2的数都除ana_nan,但是这个样子的话,ana_nan就需要用222来消除,但是操作明显不够。那么我们考虑一下n\sqrt{n}n,显然我们可以用n\sqrt{n}n当做分母,an=⌈anan⌉a_n=\left \lceil \frac{a_n}{a_{\sqrt{n}}} \right \rceilan=anan进行两次即可将ana_nan化成111。而n=447\sqrt{n}=447n=447,用222来消除的话还是有点不够,我们可以继续开根号,我们发现从2e52e52e5开根号开到>2>2>2的最后一个,最多只有5个根号数,假设为a b c d e 。对于e我们可以ae=⌈aead⌉a_e=\left \lceil \frac{a_e}{a_d} \right \rceilae=adae,进行两次。对于每个根号数都这样操作,最多需要10次,让后对于不是根号数的直接以ana_nan作为分母,一步到位。当根号数为5的时候,操作数为10+n−2−5=n+310+n-2-5=n+310+n25=n+3,满足题意。
还有注意是上取整,开根号的时候注意判断是否为平方数,我为了方便直接把每个平方根都+1了。

//#pragma GCC optimize(2)
#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<map>
#include<cmath>
#include<cctype>
#include<vector>
#include<set>
#include<queue>
#include<algorithm>
#include<sstream>
#include<ctime>
#include<cstdlib>
#define X first
#define Y second
#define L (u<<1)
#define R (u<<1|1)
#define pb push_back
#define mk make_pair
#define Mid (tr[u].l+tr[u].r>>1)
#define Len(u) (tr[u].r-tr[u].l+1)
#define random(a,b) ((a)+rand()%((b)-(a)+1))
#define db puts("---")
using namespace std;//void rd_cre() { freopen("d://dp//data.txt","w",stdout); srand(time(NULL)); }
//void rd_ac() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//AC.txt","w",stdout); }
//void rd_wa() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//WA.txt","w",stdout); }typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> PII;const int N=1000010,mod=1e9+7,INF=0x3f3f3f3f;
const double eps=1e-6;int n;
int s[20],tot;
vector<PII>v;
bool st[N];int main()
{
//	ios::sync_with_stdio(false);
//	cin.tie(0);int _; scanf("%d",&_);while(_--){scanf("%d",&n);int nn=n; v.clear(); tot=0;while(nn>2) st[nn]=true,s[++tot]=nn,nn=(int)sqrt(nn)+1;for(int i=3;i<=n;i++){if(st[i]) continue;v.pb({i,n});}for(int i=1;i<tot;i++){v.pb({s[i],s[i+1]});v.pb({s[i],s[i+1]});}v.pb({s[tot],2});v.pb({s[tot],2});printf("%d\n",(int)v.size());for(int i=0;i<(int)v.size();i++) printf("%d %d\n",v[i].X,v[i].Y);for(int i=1;i<=tot;i++) st[s[i]]=false;}return 0;
}
/**/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/315579.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Ocelot(三)- 服务发现

作者&#xff1a;markjiang7m2原文地址&#xff1a;https://www.cnblogs.com/markjiang7m2/p/10907856.html源码地址&#xff1a;https://gitee.com/Sevenm2/OcelotDemo本文是我关于Ocelot系列文章的第三篇&#xff0c;主要是给大家介绍Ocelot的另一功能。与其说是给大家介绍&a…

Educational Codeforces Round 101 (Rated for Div. 2) F. Power Sockets 哈希 + 乱搞

传送门 题意&#xff1a; 给一个二进制串aaa&#xff0c;让后定义两个串相似为有至少一个相同位置相等。现在让你找一个字典序最小的长度为kkk的串使其与aaa中每个长度为kkk的字串相似。 思路&#xff1a; 首先我们知道所有可能的串一共有2k2^k2k&#xff0c;我们把aaa串全部…

LG P4198 楼房重建(线段树)

LG P4198 楼房重建 Solution 基础的线段树题&#xff0c;虽然我还不熟练就是了。 大概就是单点修改&#xff0c;求全局的极大子序列。 我们需要维护一个区间最大值aaa和极大子序列长度sss。 合并xxx的左右儿子ls,rsls,rsls,rs时&#xff0c;axa_xax​直接取max{als,ars}max…

P3527 [POI2011]MET-Meteors 整体二分 + 树状数组

洛谷 题意&#xff1a; 思路&#xff1a; 考虑整体二分前&#xff0c;一定要思考一下直接二分怎么做。显然对每个城市&#xff0c;当<pos<pos<pos的时候收集不够足够的陨石&#xff0c;>pos>pos>pos的时候能收集足够多陨石&#xff0c;这个时候pospospos即…

Ocelot(二)- 请求聚合与负载均衡

作者&#xff1a;markjiang7m2原文地址&#xff1a;https://www.cnblogs.com/markjiang7m2/p/10865511.html源码地址&#xff1a;https://gitee.com/Sevenm2/OcelotDemo在上一篇Ocelot的文章中&#xff0c;我已经给大家介绍了何为Ocelot以及如何简单使用它的路由功能&#xff0…

BZOJ #3064. Tyvj 1518 CPU监控(线段树,历史最值)

BZOJ #3064. Tyvj 1518 CPU监控(线段树&#xff0c;历史最值) Solution 我们考虑用线段树维护此题。 先不考虑历史最值。 大概需要维护一种特殊的懒标记(x,y)(x,y)(x,y)表示让区间内所有数ppp&#xff0c;pmax(px,y)pmax(px,y)pmax(px,y)。 对于区间加zzz&#xff0c;打一…

Codeforces Round #655 (Div. 2) B. Omkar and Last Class of Math 数学

传送门 题意&#xff1a; 找出ABnABnABn并且lcm⁡(A,B)\operatorname{lcm}(A,B)lcm(A,B)最小的AAA和BBB。 思路&#xff1a; nnn为偶数的时候答案肯定为都是n2\frac{n}{2}2n​。当nnn为奇数的时候&#xff0c;我们假设xxx为nnn的一个因子&#xff0c;那么nmodx0n \bmod x0nmo…

「分布式系统理论」系列专题

如今互联网已经成为整个社会的基础设施&#xff0c;分布式系统并不是少数大公司的专属&#xff0c;所以分布式系统理论可能是你迟早需要掌握的知识。如果你是程序员&#xff0c;相信这些文章你肯定能看懂&#xff1b;如果你不是程序员&#xff0c;相信这些能使你能更懂程序员&a…

AGC002F - Leftmost Ball(dp,组合计数)

AGC002F - Leftmost Ball Solution 设fi,jf_{i,j}fi,j​表示放iii个白球&#xff0c;确定了jjj个颜色的球的位置的方案数。 有两种转移&#xff1a; 放白球&#xff0c;fi,j−>fi1,jf_{i,j}->f_{i1,j}fi,j​−>fi1,j​放完一种颜色的球&#xff0c;fi,j−>fi,j…

Codeforces Round #655 (Div. 2) D. Omkar and Circle 思维 + 奇偶贪心

传送门 题意&#xff1a; 给一个长为nnn的数组(nnn为奇数)&#xff0c;iii与i−1i-1i−1相邻&#xff0c;111与nnn相邻&#xff0c;每次选择一个位置&#xff0c;将这个位置的值变成与它相邻的两个位置的和&#xff0c;让后将相邻位置删掉。求最终剩下一个数的时候最大值是多少…

AGC004E - Salvage Robots(dp,思维)

AGC004E - Salvage Robots Solution 怎么又双叒叕遇到和NOIP2020T4NOIP2020T4NOIP2020T4和那道CFCFCF题一样的题了啊&#xff0c;惨痛回忆QAQQAQQAQ。 大概就是把问题看成刚开始的点不动&#xff0c;整个网格图动&#xff0c;机器人向上111格等于网格整体向下111格&#xff…

SQL Server 2012如何打开2016的profiler文件

作者&#xff1a;markjiang7m2原文地址&#xff1a;https://www.cnblogs.com/markjiang7m2/p/10980191.html背景在上星期&#xff0c;公司负责support的同事接到反馈说某个项目生产环境上的某个页面加载很慢&#xff0c;一般遇到这种问题&#xff0c;我们的support同事都会先上…

Codeforces Round #655 (Div. 2) E. Omkar and Last Floor 区间dp + 巧妙的状态设计

传送门 题意&#xff1a; 思路&#xff1a; 按照贪心的思路来考虑的话&#xff0c;显然是每一列111的个数越多越好&#xff0c;所以我们能放到一列就放到一列。设f[l][r]f[l][r]f[l][r]为在[l,r][l,r][l,r]内&#xff0c;区间全部都在里面的贡献。显然这个贡献就是全部落在[l…

AKS使用Azure File实现动态持久化存储

本文作者|搪瓷小娃娃本文来源|搪瓷小娃娃博客园如我们所知&#xff0c;Kubernetes通过 Volume 为集群中的容器提供存储&#xff0c;通过Persistent Volume 和 Persistent Volume Claim实现Volume 的静态供给和动态供给。Azure File和Azure Disk 也在Kubernetes 支持的动态供给 …

AGC005D - ~K Perm Counting(组合数学,背包,dp)

AGC005D - ~K Perm Counting Solution 经典数排列个数题&#xff0c;写了个大麻烦容斥。 直接容斥&#xff0c;考虑求出fif_ifi​表示有iii个位置∣pi−i∣k|p_i-i|k∣pi​−i∣k的方案数。一个位置iii满足∣pi−i∣k|p_i-i|k∣pi​−i∣k&#xff0c;要么piikp_iikpi​ik&a…

Codeforces Round #704 (Div. 2) D. Genius‘s Gambit 构造 + 细节

传送门 题意&#xff1a; 给a,b,ka,b,ka,b,k&#xff0c;要求用aaa个000和bbb个111组成二进制xxx和yyy&#xff0c;并且x−yx-yx−y恰好有kkk个111&#xff0c;并且xxx和yyy不含前导零。 思路&#xff1a; 首先需要看到不含前导零&#xff0c;一开始没看见wa5了。让后一个很明…

ASP.NET Core 应用程序状态

在ASP.NET Core中&#xff0c;由多种途径可以对应用程序状态进行管理&#xff0c;使用哪种途径&#xff0c;由检索状态的时机和方式决定。应用程序状态指的是用于描述当前状况的任意数据。包括全局和用户特有的数据。开发人员可以根据不同的因素来选择不同的方式存储状态数据&a…

HDU6218 2017ACM/ICPC亚洲区沈阳站 Bridge(Set,线段树)

HDU6218 2017ACM/ICPC亚洲区沈阳站 Bridge Solution 我们考虑维护在环上的边的个数&#xff0c;答案就是总边数减去环上边数。 环的形态是这样的&#xff1a;(0,l),(0,l1)...(0,r),(1,r),(1,r−1)...(1,l)(0,l),(0,l1)...(0,r),(1,r),(1,r-1)...(1,l)(0,l),(0,l1)...(0,r),(…

Codeforces Round #704 (Div. 2) E. Almost Fault-Tolerant Database 思维

传送门 题意&#xff1a; 给nnn个长度为mmm的数组&#xff0c;要求构造一个长度为mmm的数组&#xff0c;使得这个数组与前面nnn个数组同一位置最多两个元素不同。 思路&#xff1a; 我们为了方便构造&#xff0c;可以先把要构造的数组看成nnn个数组的第一个数组&#xff0c;让…

Asp.net core使用MediatR进程内发布/订阅

1、背景最近&#xff0c;一个工作了一个月的同事离职了&#xff0c;所做的东西怼了过来。一看代码&#xff0c;惨不忍睹&#xff0c;一个方法六七百行&#xff0c;啥也不说了吧&#xff0c;实在没法儿说。介绍下业务场景吧&#xff0c;一个公共操作A&#xff0c;业务中各个地方…