BZOJ #3064. Tyvj 1518 CPU监控(线段树,历史最值)

BZOJ #3064. Tyvj 1518 CPU监控(线段树,历史最值)

Solution

我们考虑用线段树维护此题。

先不考虑历史最值。

大概需要维护一种特殊的懒标记(x,y)(x,y)(x,y)表示让区间内所有数pppp=max(p+x,y)p=max(p+x,y)p=max(p+x,y)

对于区间加zzz,打一个(z,−∞)(z,-\infty)(z,)的标记即可。
对于区间覆盖zzz,打一个(−∞,z)(-\infty,z)(,z)的标记即可。

把标记(a,b)(a,b)(a,b)合并到(c,d)(c,d)(c,d)时,只需要让c′=a+c,d′=max(d+a,b)c'=a+c,d'=max(d+a,b)c=a+c,d=max(d+a,b)即可。
剩下的就是一个线段树维护区间最大值。

现在加上了历史最值,我们要多记录一个区间历史最大值和历史最大值的标记,该标记表示从上一次下传到当前时刻的所有修改中标记的最大贡献,注意这里的标记是有序合并的。这相当于一个分段函数最值,对于标记(a,b)(a,b)(a,b)(c,d)(c,d)(c,d),不难发现其最大可以取到(max(a,c),max(b,d))(max(a,c),max(b,d))(max(a,c),max(b,d))

于是按上面的方法维护即可。

时间复杂度O(nlgn)O(nlgn)O(nlgn)

需要注意infinfinf的取值,很多标记合并可能会爆intintint,太小可能减不完。

Code

#include <vector>
#include <list>
#include <map>
#include <set>
#include <deque>
#include <queue>
#include <stack>
#include <bitset>
#include <algorithm>
#include <functional>
#include <numeric>
#include <utility>
#include <sstream>
#include <iostream>
#include <iomanip>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <cctype>
#include <string>
#include <cstring>
#include <ctime>
#include <cassert>
#include <string.h>
//#include <unordered_set>
//#include <unordered_map>
//#include <bits/stdc++.h>#define MP(A,B) make_pair(A,B)
#define PB(A) push_back(A)
#define SIZE(A) ((int)A.size())
#define LEN(A) ((int)A.length())
#define FOR(i,a,b) for(int i=(a);i<(b);++i)
#define fi first
#define se secondusing namespace std;template<typename T>inline bool upmin(T &x,T y) { return y<x?x=y,1:0; }
template<typename T>inline bool upmax(T &x,T y) { return x<y?x=y,1:0; }typedef long long ll;
typedef unsigned long long ull;
typedef long double lod;
typedef pair<int,int> PR;
typedef vector<int> VI;const lod eps=1e-11;
const lod pi=acos(-1);
const int oo=1<<30;
const ll loo=1ll<<62;
const int mods=998244353;
const int MAXN=100005;
const int INF=0x3f3f3f3f;//1061109567
/*--------------------------------------------------------------------*/
inline int read()
{int f=1,x=0; char c=getchar();while (c<'0'||c>'9') { if (c=='-') f=-1; c=getchar(); }while (c>='0'&&c<='9') { x=(x<<3)+(x<<1)+(c^48); c=getchar(); }return x*f;
}
struct Node
{ll x,y;Node(){}Node(ll x,ll y):x(x),y(y){}friend Node operator + (Node a,Node b) { return Node(a.x+b.x,max(b.x+a.y,b.y)); }friend Node operator * (Node a,Node b) { return Node(max(a.x,b.x),max(a.y,b.y)); }
} ntag[MAXN<<2],ptag[MAXN<<2];
ll nmx[MAXN<<2],pmx[MAXN<<2],a[MAXN];void up(int x)
{nmx[x]=max(nmx[x<<1],nmx[x<<1|1]);pmx[x]=max(pmx[x<<1],pmx[x<<1|1]);
}
void build(int x,int l,int r)
{ntag[x]=ptag[x]=Node(0,-INF);if (l==r) { nmx[x]=pmx[x]=a[l]; return; }int mid=(l+r)>>1;build(x<<1,l,mid);build(x<<1|1,mid+1,r);up(x);
}
void down(int x)
{int ls=x<<1,rs=x<<1|1;ptag[ls]=ptag[ls]*(ntag[ls]+ptag[x]);ptag[rs]=ptag[rs]*(ntag[rs]+ptag[x]);ntag[ls]=ntag[ls]+ntag[x];ntag[rs]=ntag[rs]+ntag[x];pmx[ls]=max(pmx[ls],max(nmx[ls]+ptag[x].x,ptag[x].y));pmx[rs]=max(pmx[rs],max(nmx[rs]+ptag[x].x,ptag[x].y));nmx[ls]=max(nmx[ls]+ntag[x].x,ntag[x].y);nmx[rs]=max(nmx[rs]+ntag[x].x,ntag[x].y);ntag[x]=ptag[x]=Node(0,-INF);
}
void update(int x,int l,int r,int L,int R,Node y)
{if (l>=L&&r<=R){ntag[x]=ntag[x]+y;ptag[x]=ptag[x]*ntag[x];nmx[x]=max(nmx[x]+y.x,y.y);pmx[x]=max(pmx[x],nmx[x]);return;}down(x);int mid=(l+r)>>1;if (R<=mid) update(x<<1,l,mid,L,R,y);else if (L>mid) update(x<<1|1,mid+1,r,L,R,y);else update(x<<1,l,mid,L,mid,y),update(x<<1|1,mid+1,r,mid+1,R,y);up(x);
}
ll query(int x,int l,int r,int L,int R,int opt)
{if (l>=L&&r<=R) return opt?pmx[x]:nmx[x];down(x);int mid=(l+r)>>1;if (R<=mid) return query(x<<1,l,mid,L,R,opt);else if (L>mid) return query(x<<1|1,mid+1,r,L,R,opt);else return max(query(x<<1,l,mid,L,mid,opt),query(x<<1|1,mid+1,r,mid+1,R,opt));
}
signed main()
{int n=read();for (int i=1;i<=n;i++) a[i]=read();build(1,1,n);int Case=read();while (Case--){char st[5]; scanf("%s",st);int x=read(),y=read(),z;if (st[0]=='Q') printf("%lld\n",query(1,1,n,x,y,0));if (st[0]=='A') printf("%lld\n",query(1,1,n,x,y,1));if (st[0]=='P') z=read(),update(1,1,n,x,y,Node(z,-INF));if (st[0]=='C') z=read(),update(1,1,n,x,y,Node(-INF,z)); }return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/315573.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Codeforces Round #655 (Div. 2) B. Omkar and Last Class of Math 数学

传送门 题意&#xff1a; 找出ABnABnABn并且lcm⁡(A,B)\operatorname{lcm}(A,B)lcm(A,B)最小的AAA和BBB。 思路&#xff1a; nnn为偶数的时候答案肯定为都是n2\frac{n}{2}2n​。当nnn为奇数的时候&#xff0c;我们假设xxx为nnn的一个因子&#xff0c;那么nmodx0n \bmod x0nmo…

「分布式系统理论」系列专题

如今互联网已经成为整个社会的基础设施&#xff0c;分布式系统并不是少数大公司的专属&#xff0c;所以分布式系统理论可能是你迟早需要掌握的知识。如果你是程序员&#xff0c;相信这些文章你肯定能看懂&#xff1b;如果你不是程序员&#xff0c;相信这些能使你能更懂程序员&a…

AGC002F - Leftmost Ball(dp,组合计数)

AGC002F - Leftmost Ball Solution 设fi,jf_{i,j}fi,j​表示放iii个白球&#xff0c;确定了jjj个颜色的球的位置的方案数。 有两种转移&#xff1a; 放白球&#xff0c;fi,j−>fi1,jf_{i,j}->f_{i1,j}fi,j​−>fi1,j​放完一种颜色的球&#xff0c;fi,j−>fi,j…

Codeforces Round #655 (Div. 2) D. Omkar and Circle 思维 + 奇偶贪心

传送门 题意&#xff1a; 给一个长为nnn的数组(nnn为奇数)&#xff0c;iii与i−1i-1i−1相邻&#xff0c;111与nnn相邻&#xff0c;每次选择一个位置&#xff0c;将这个位置的值变成与它相邻的两个位置的和&#xff0c;让后将相邻位置删掉。求最终剩下一个数的时候最大值是多少…

AGC004E - Salvage Robots(dp,思维)

AGC004E - Salvage Robots Solution 怎么又双叒叕遇到和NOIP2020T4NOIP2020T4NOIP2020T4和那道CFCFCF题一样的题了啊&#xff0c;惨痛回忆QAQQAQQAQ。 大概就是把问题看成刚开始的点不动&#xff0c;整个网格图动&#xff0c;机器人向上111格等于网格整体向下111格&#xff…

SQL Server 2012如何打开2016的profiler文件

作者&#xff1a;markjiang7m2原文地址&#xff1a;https://www.cnblogs.com/markjiang7m2/p/10980191.html背景在上星期&#xff0c;公司负责support的同事接到反馈说某个项目生产环境上的某个页面加载很慢&#xff0c;一般遇到这种问题&#xff0c;我们的support同事都会先上…

Codeforces Round #655 (Div. 2) E. Omkar and Last Floor 区间dp + 巧妙的状态设计

传送门 题意&#xff1a; 思路&#xff1a; 按照贪心的思路来考虑的话&#xff0c;显然是每一列111的个数越多越好&#xff0c;所以我们能放到一列就放到一列。设f[l][r]f[l][r]f[l][r]为在[l,r][l,r][l,r]内&#xff0c;区间全部都在里面的贡献。显然这个贡献就是全部落在[l…

AKS使用Azure File实现动态持久化存储

本文作者|搪瓷小娃娃本文来源|搪瓷小娃娃博客园如我们所知&#xff0c;Kubernetes通过 Volume 为集群中的容器提供存储&#xff0c;通过Persistent Volume 和 Persistent Volume Claim实现Volume 的静态供给和动态供给。Azure File和Azure Disk 也在Kubernetes 支持的动态供给 …

AGC005D - ~K Perm Counting(组合数学,背包,dp)

AGC005D - ~K Perm Counting Solution 经典数排列个数题&#xff0c;写了个大麻烦容斥。 直接容斥&#xff0c;考虑求出fif_ifi​表示有iii个位置∣pi−i∣k|p_i-i|k∣pi​−i∣k的方案数。一个位置iii满足∣pi−i∣k|p_i-i|k∣pi​−i∣k&#xff0c;要么piikp_iikpi​ik&a…

Codeforces Round #704 (Div. 2) D. Genius‘s Gambit 构造 + 细节

传送门 题意&#xff1a; 给a,b,ka,b,ka,b,k&#xff0c;要求用aaa个000和bbb个111组成二进制xxx和yyy&#xff0c;并且x−yx-yx−y恰好有kkk个111&#xff0c;并且xxx和yyy不含前导零。 思路&#xff1a; 首先需要看到不含前导零&#xff0c;一开始没看见wa5了。让后一个很明…

ASP.NET Core 应用程序状态

在ASP.NET Core中&#xff0c;由多种途径可以对应用程序状态进行管理&#xff0c;使用哪种途径&#xff0c;由检索状态的时机和方式决定。应用程序状态指的是用于描述当前状况的任意数据。包括全局和用户特有的数据。开发人员可以根据不同的因素来选择不同的方式存储状态数据&a…

HDU6218 2017ACM/ICPC亚洲区沈阳站 Bridge(Set,线段树)

HDU6218 2017ACM/ICPC亚洲区沈阳站 Bridge Solution 我们考虑维护在环上的边的个数&#xff0c;答案就是总边数减去环上边数。 环的形态是这样的&#xff1a;(0,l),(0,l1)...(0,r),(1,r),(1,r−1)...(1,l)(0,l),(0,l1)...(0,r),(1,r),(1,r-1)...(1,l)(0,l),(0,l1)...(0,r),(…

Codeforces Round #704 (Div. 2) E. Almost Fault-Tolerant Database 思维

传送门 题意&#xff1a; 给nnn个长度为mmm的数组&#xff0c;要求构造一个长度为mmm的数组&#xff0c;使得这个数组与前面nnn个数组同一位置最多两个元素不同。 思路&#xff1a; 我们为了方便构造&#xff0c;可以先把要构造的数组看成nnn个数组的第一个数组&#xff0c;让…

Asp.net core使用MediatR进程内发布/订阅

1、背景最近&#xff0c;一个工作了一个月的同事离职了&#xff0c;所做的东西怼了过来。一看代码&#xff0c;惨不忍睹&#xff0c;一个方法六七百行&#xff0c;啥也不说了吧&#xff0c;实在没法儿说。介绍下业务场景吧&#xff0c;一个公共操作A&#xff0c;业务中各个地方…

[APIO2018] New Home 新家(线段树,二分答案,离散化)

[APIO2018] New Home 新家 Solution 对于时间轴我们直接离散化扫描线&#xff0c;维护每一个商店的加入和删除。 对于询问(x,t)(x,t)(x,t)&#xff0c;不好直接回答&#xff0c;这里的关键一步是&#xff1a;我们要求的是kkk种商店最小距离的最大值&#xff0c;于是考虑二分…

Codeforces Round #701 (Div. 2) C. Floor and Mod 数学分块

传送门 题意&#xff1a; 给两个数x,yx,yx,y。现在你计算有多少对a(a<x)a(a<x)a(a<x)和b(b<y)b(b<y)b(b<y)使得⌊ab⌋amodb\left \lfloor \frac{a}{b} \right \rfloora\bmod b⌊ba​⌋amodb。 思路&#xff1a; 因为xxx和yyy都是1e91e91e9的范围&#xff0…

AGC011D - Half Reflector(模拟)

AGC011D - Half Reflector Solution 先考虑改变一次。 我们令LLL表示往左走的球&#xff0c;RRR表示往右走的球&#xff0c;xxx表示任意种类的球&#xff0c;(−x)(-x)(−x)表示与xxx相反种类的球。 当球处于ARAARAARA的状态&#xff08;即有一个向右的球在两个AAA机器人之间…

[开源] FreeSql.Tools Razor 生成器

FreeSql 经过半年的开发和坚持维护&#xff0c;在 0.6.x 版本中完成了几大重要事件&#xff1a;1、按小包拆分&#xff0c;每个数据库实现为单独 dll&#xff1b;2、实现 .net framework 4.5 支持&#xff1b;3、同时支持 MySql.Data、MySqlConnector 的实现&#xff1b;4、自定…

Codeforces Round #701 (Div. 2) D. Multiples and Power Differences 思维构造

传送门 题意&#xff1a; 给定一个矩阵aaa&#xff0c;让你构造一个矩阵bbb&#xff0c;要求矩阵bbb的每个元素是aaa对应位置元素的倍数&#xff0c;且矩阵bbb的每两个相邻元素相差为k4(k>1)k^4(k>1)k4(k>1)。注意aaa的元素范围是1<a<161<a<161<a<…

AGC012D - Colorful Balls(并查集)

AGC012D - Colorful Balls Solution 连边题。 找出www最小的球yyy和www最小且颜色和yyy不同的球zzz。 yyy向所有colt̸coly,wtwy≤Ycol_t\not col_y,w_tw_y\leq Ycolt​​coly​,wt​wy​≤Y的球ttt连边。zzz向所有colt̸coly,wtwz≤Ycol_t\not col_y,w_tw_z\leq Ycolt​…