乌龟棋
思路
最优值问题,显然可以通过dpdpdp解决,我们定义dp[i][j][k][l]dp[i][j][k][l]dp[i][j][k][l]表示到达1+i∗2∗j+3∗k+4∗l1 + i * 2 * j + 3 * k + 4 * l1+i∗2∗j+3∗k+4∗l这个点之前已经走过的价值最大的值(i,j,k,li, j, k, li,j,k,l分别是走一步,走两步,走三步,走四步的数量),显然这个点我们可以从dp[i−1][j][k][l]dp[i - 1][j][k][l]dp[i−1][j][k][l]或或者dp[i][j−1][k][l]dp[i][j - 1][k][l]dp[i][j−1][k][l]或者dp[i][j][k−1][l]dp[i][j][k - 1][l]dp[i][j][k−1][l]或者dp[i][j][k][l−1]dp[i][j][k][l - 1]dp[i][j][k][l−1]转移过来,因此我们只需要用四重forforfor循环来进行dpdpdp即可得到我们的最优值,同时输出答案加上点nnn的权值即可。
代码
/*Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>
#define mp make_pair
#define pb push_back
#define endl '\n'using namespace std;typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;const double pi = acos(-1.0);
const double eps = 1e-7;
const int inf = 0x3f3f3f3f;inline ll read() {ll f = 1, x = 0;char c = getchar();while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (c ^ 48);c = getchar();}return f * x;
}void print(ll x) {if(x < 10) {putchar(x + 48);return ;}print(x / 10);putchar(x % 10 + 48);
}const int N = 400;int n, m, num[5], cost[N], dp[45][45][45][45];int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);n = read(), m = read();for(int i = 1; i <= n; i++) {cost[i] = read();}for(int i = 1; i <= m; i++) {num[read()]++;}for(int i = 0; i <= num[1]; i++) {for(int j = 0; j <= num[2]; j++) {for(int k = 0; k <= num[3]; k++) {for(int l = 0; l <= num[4]; l++) {int pos = 1 + i + 2 * j + 3 * k + 4 * l;if(i) dp[i][j][k][l] = max(dp[i][j][k][l], dp[i - 1][j][k][l] + cost[pos - 1]);if(j) dp[i][j][k][l] = max(dp[i][j][k][l], dp[i][j - 1][k][l] + cost[pos - 2]);if(k) dp[i][j][k][l] = max(dp[i][j][k][l], dp[i][j][k - 1][l] + cost[pos - 3]);if(l) dp[i][j][k][l] = max(dp[i][j][k][l], dp[i][j][k][l - 1] + cost[pos - 4]);}}}}//我们记录的是dp[num[1]][num[2]][num[3]][num[4]]之前的花费,所以答案还要加上这个点的花费。printf("%d\n", dp[num[1]][num[2]][num[3]][num[4]] + cost[n]);return 0;
}