乌龟棋(dp)

乌龟棋

思路

最优值问题,显然可以通过dpdpdp解决,我们定义dp[i][j][k][l]dp[i][j][k][l]dp[i][j][k][l]表示到达1+i∗2∗j+3∗k+4∗l1 + i * 2 * j + 3 * k + 4 * l1+i2j+3k+4l这个点之前已经走过的价值最大的值(i,j,k,li, j, k, li,j,k,l分别是走一步,走两步,走三步,走四步的数量),显然这个点我们可以从dp[i−1][j][k][l]dp[i - 1][j][k][l]dp[i1][j][k][l]或或者dp[i][j−1][k][l]dp[i][j - 1][k][l]dp[i][j1][k][l]或者dp[i][j][k−1][l]dp[i][j][k - 1][l]dp[i][j][k1][l]或者dp[i][j][k][l−1]dp[i][j][k][l - 1]dp[i][j][k][l1]转移过来,因此我们只需要用四重forforfor循环来进行dpdpdp即可得到我们的最优值,同时输出答案加上点nnn的权值即可。

代码

/*Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>
#define mp make_pair
#define pb push_back
#define endl '\n'using namespace std;typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;const double pi = acos(-1.0);
const double eps = 1e-7;
const int inf = 0x3f3f3f3f;inline ll read() {ll f = 1, x = 0;char c = getchar();while(c < '0' || c > '9') {if(c == '-') f = -1;c = getchar();}while(c >= '0' && c <= '9') {x = (x << 1) + (x << 3) + (c ^ 48);c = getchar();}return f * x;
}void print(ll x) {if(x < 10) {putchar(x + 48);return ;}print(x / 10);putchar(x % 10 + 48);
}const int N = 400;int n, m, num[5], cost[N], dp[45][45][45][45];int main() {// freopen("in.txt", "r", stdin);// freopen("out.txt", "w", stdout);// ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);n = read(), m = read();for(int i = 1; i <= n; i++) {cost[i] = read();}for(int i = 1; i <= m; i++) {num[read()]++;}for(int i = 0; i <= num[1]; i++) {for(int j = 0; j <= num[2]; j++) {for(int k = 0; k <= num[3]; k++) {for(int l = 0; l <= num[4]; l++) {int pos = 1 + i + 2 * j + 3 * k + 4 * l;if(i)   dp[i][j][k][l] = max(dp[i][j][k][l], dp[i - 1][j][k][l] + cost[pos - 1]);if(j)   dp[i][j][k][l] = max(dp[i][j][k][l], dp[i][j - 1][k][l] + cost[pos - 2]);if(k)   dp[i][j][k][l] = max(dp[i][j][k][l], dp[i][j][k - 1][l] + cost[pos - 3]);if(l)   dp[i][j][k][l] = max(dp[i][j][k][l], dp[i][j][k][l - 1] + cost[pos - 4]);}}}}//我们记录的是dp[num[1]][num[2]][num[3]][num[4]]之前的花费,所以答案还要加上这个点的花费。printf("%d\n", dp[num[1]][num[2]][num[3]][num[4]] + cost[n]);return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/314467.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CF 1631 D. Range and Partition 尺取 + 前缀和

传送门 文章目录目录&#xff1a;题意&#xff1a;思路&#xff1a;目录&#xff1a; 题意&#xff1a; 给你一个长度为nnn的数组aaa以及kkk&#xff0c;让你选择一个值域[x,y][x,y][x,y]&#xff0c;满足能将该数组分成连续的kkk段并且每段中值域在[x,y][x,y][x,y]内的个数严…

gRPC的简单使用

前言八月初的时候&#xff0c;在公司内部做了一个主题为《gRPC的简单使用》的分享&#xff0c;其实就是和小伙伴们扯扯淡&#xff0c;现在抽空回忆一下&#xff0c;也算是一个小小的总结吧。现在市面上耳熟能详的RPC框架也很多&#xff0c;下面列举几个遇到比较多的。谷歌的gRP…

P6282 [USACO20OPEN] Cereal S 思维

传送门 文章目录目录&#xff1a;题意&#xff1a;思路&#xff1a;目录&#xff1a; 题意&#xff1a; 你有nnn头奶牛&#xff0c;mmm中不同种类的麦片&#xff0c;每个麦片只有一箱&#xff0c;给你每个奶牛第一和第二喜欢的麦片&#xff0c;奶牛会先看第一喜欢的是否有&am…

HDU 4417 Super Mario(莫队 + 树状数组 + 离散化)

Super Mario 思路 区间查找问题&#xff0c;容易想到离线莫队&#xff0c;确实这题就是莫队&#xff0c;接下来我们考虑如何维护区间高度值问题。 既然是离线嘛&#xff0c;我们容易想到离散化和他挂钩&#xff0c;想想这题是否需要离散化&#xff0c;高度的最大值是1000000…

生命周期结束,Spring Boot 1.x退役

一年前 Spring 官方宣布 Spring Boot 1.x 生命周期将于今年 8 月 1 日结束&#xff0c;如今时间已到&#xff0c;在发布 Spring Boot 1.5.22 的同时&#xff0c;Spring 确认将不再为 1.x 系列发布维护版本。官方希望用户尽快迁移到 Spring Boot 2.x 上&#xff0c;为此还制作了…

P3085 [USACO13OPEN]Yin and Yang G 点分治

文章目录题意&#xff1a;思路&#xff1a;传送门 题意&#xff1a; 给你一颗nnn个点的树&#xff0c;每条边为黑色或者白色&#xff0c;问满足以下条件的路径条数&#xff1a;路径上存在一个不是端点的点&#xff0c;使得两端点到该点的两条路径上两种颜色的边数相等。 1≤n…

G. Xor-MST(异或最小生成树)

G. Xor-MST 思路 异或最小生成树&#xff0c;这里采用了一种分治的方法来贪心求解最值&#xff1a; 首先我们对所有的点权值从小到大排个序&#xff0c;从高位开始在中间找到一个这个位置上的0&#xff0c;10&#xff0c;10&#xff0c;1分界点分成两个集合&#xff0c;然后…

CF 1638 E. Colorful Operations set 区间平推

文章目录题意&#xff1a;思路&#xff1a;传送门 题意&#xff1a; 给你一个数组aaa&#xff0c;初始价值全为000&#xff0c;颜色全为111&#xff0c;让后让你实现以下三个操作&#xff1a; 将[l,r][l,r][l,r]区间内的颜色都染成ccc。将所有颜色为ccc的位置价值都加上xxx。…

B Graph(异或最小生成树)

Graph 思路 图是联通的&#xff0c;并且加边的时候要保证环一定是异或值为0&#xff0c;所以我们可以保证从一个点到另一个点的路径异或值是不变的&#xff0c;这个时候就简单了&#xff0c;不就是一个异或最小生成树了嘛。 我们只要预处理一下&#xff0c;任选一个点作为根…

Apollo 配置中心:分布式部署

Apollo&#xff08;阿波罗&#xff09;是携程框架部门研发的分布式配置中心&#xff0c;能够集中化管理应用不同环境、不同集群的配置&#xff0c;配置修改后能够实时推送到应用端&#xff0c;并且具备规范的权限、流程治理等特性&#xff0c;适用于微服务配置管理场景。服务端…

CF 1637 D. Yet Another Minimization Problem dp + 思维

文章目录题意&#xff1a;思路&#xff1a;传送门 题意&#xff1a; 给你两个长度为nnn的数组a,ba,ba,b&#xff0c;每次交换可以选择一个iii&#xff0c;交换ai,bia_i,b_iai​,bi​&#xff0c;最小化∑i1n∑ji1n(aiaj)2∑i1n∑ji1n(bibj)2\sum_{i1}^n \sum_{ji1}^n(a_ia_j)…

各种逆元推导

逆元 求解一&#xff08;费马小定理&#xff09; ppp是一个质数&#xff0c;并且a%p̸0a \% p \not 0a%p​0&#xff0c;则有ap−1≡1(modp)a ^ {p - 1} \equiv 1 \pmod pap−1≡1(modp)&#xff0c;ap−2≡a−1a ^ {p - 2} \equiv a ^ {-1}ap−2≡a−1&#xff0c;即可得到…

使用Redis实现最近N条数据的决策

前言很多时候&#xff0c;我们会根据用户最近一段时间的行为&#xff0c;做出一些相应的策略&#xff0c;从而改变系统的运动轨迹。举个简单的例子来说明一下&#xff1a;假设A公司现在有两个合作伙伴(B和C)&#xff0c;B和C都是提供天气数据的&#xff0c;现在A公司做了一个聚…

CF 1635 D. Infinite Set 思维 + 二进制

文章目录题意思路传送门 题意 给你一个集合SSS&#xff0c;初始集合内含有nnn个数&#xff0c;让后按照一下三个规则无限的向集合中添加数&#xff1a; 对于所有的1≤i≤n,xai1\le i\le n,xa_i1≤i≤n,xai​都在集合中。对于所有的x2y1,y∈Sx2y1,y\in Sx2y1,y∈S&#xff0c…

2020杭电多校(二) New Equipments(最小费用最大流)

New Equipments 思路 数据已经有提示了b∗b<4∗a∗cb * b < 4 * a * cb∗b<4∗a∗c&#xff0c;这意味着&#xff0c;每一个a,b,ca, b, ca,b,c构成的二元一次方程只与xxx坐标最多相交一次&#xff0c;所以我们对每一个a∗i∗ib∗icya * i * i b * i c ya∗i∗ib∗…

为什么我不喜欢数据库三范式

插曲最近&#xff0c;一个远房亲戚的小表弟准备选修专业找到我问&#xff1a;"哥&#xff0c;现在学数据库有没有前途阿?""当然有啊&#xff0c;前途大大的呢""那我现在开始学数据库&#xff0c;需要先从什么开始呢?""学课程的话&#xf…

CF 1635E Cars 二分图 + 拓扑

文章目录题意思路传送门 题意 给你nnn个点&#xff0c;需要给每个点定向&#xff0c;方向可以向右或者向左&#xff0c;定向之后点会朝选择的方向移动&#xff0c;要求满足mmm个条件&#xff0c;两种不同的条件如下&#xff1a; i,ji,ji,j两个位置定向之后移动不会相遇。i,ji…

[CQOI2007]涂色PAINT

[CQOI2007]涂色PAINT 思路 显然我们可以考虑用dpdpdp来求解问题&#xff0c;碰到那种一眼没思路的题稳是dpdpdp没跑了&#xff0c;那么我们就往dpdpdp方面去考虑吧。 我们定义dp[i][j]dp[i][j]dp[i][j]&#xff0c;表示把[i,j][i, j][i,j]这个区间涂上颜色要用多少步&#x…

ASP.NET 自定义项目模板

前言在微服务架构盛行的时代&#xff0c;一言不合就新建一个服务&#xff0c;虽然搭建服务并没什么难度&#xff0c;但不可避免的是每个人搭建出来的架子会存在差异&#xff0c;这很合理&#xff0c;因为每个开发者的个人风格、工作经验都不一样&#xff0c;难免认为自己喜欢的…

CF372 C. Watching Fireworks is Fun 单调队列优化dp

文章目录题意思路传送门 题意 城镇中有nnn个位置&#xff0c;有mmm个烟花要放&#xff0c;第iii个烟花放出的时间记为tit_iti​&#xff0c;放出的位置记为aia_iai​。如果烟花放出的时候你在位置xxx&#xff0c;那么将收获bi−∣ai−x∣b_i-|a_i-x|bi​−∣ai​−x∣点的快乐…