CF 1637 D. Yet Another Minimization Problem dp + 思维

文章目录

  • 题意:
  • 思路:

传送门

题意:

给你两个长度为nnn的数组a,ba,ba,b,每次交换可以选择一个iii,交换ai,bia_i,b_iai,bi,最小化∑i=1n∑j=i+1n(ai+aj)2+∑i=1n∑j=i+1n(bi+bj)2\sum_{i=1}^n \sum_{j=i+1}^n(a_i+a_j)^2+\sum_{i=1}^n \sum_{j=i+1}^n(b_i+b_j)^2i=1nj=i+1n(ai+aj)2+i=1nj=i+1n(bi+bj)2

1≤n≤100,1≤ai,bi≤1001\le n\le 100,1\le a_i,b_i\le 1001n100,1ai,bi100

思路:

首先化简式子,∑i=1n∑j=i+1n(ai+aj)2=(n−1)∗∑i=1nai2+∑i=1n∑j=1naiaj\sum_{i=1}^n \sum_{j=i+1}^n(a_i+a_j)^2=(n-1)*\sum_{i=1}^na_i^2+\sum_{i=1}^n\sum_{j=1}^na_ia_ji=1nj=i+1n(ai+aj)2=(n1)i=1nai2+i=1nj=1naiaj,之后将第二项式子改写为(∑i=1nai)2−∑i=1nai2(\sum_{i=1}^na_i)^2-\sum_{i=1}^na_i^2(i=1nai)2i=1nai2,让后化简一下就是(n−2)∗∑i=1nai2+(∑i=1nai)2(n-2)*\sum_{i=1}^na_i^2+(\sum_{i=1}^na_i)^2(n2)i=1nai2+(i=1nai)2,对于bbb同理,不难发现前面一块是定值,现在我们只需要最小化(∑i=1nai)2+(∑i=1nbi)2(\sum_{i=1}^na_i)^2+(\sum_{i=1}^nb_i)^2(i=1nai)2+(i=1nbi)2即可,考虑用类似背包dpdpdp求出来∑i=1nai\sum_{i=1}^na_ii=1nai所有可能的值,注意这里dpdpdp不能继承前一个位置的状态。让后遍历可能的值取最小即可。

#include<bits/stdc++.h>
#define X first
#define Y second
#define L (u<<1)
#define R (u<<1|1)
#define Mid (tr[u].l+tr[u].r>>1)
#define pb push_back
using namespace std;const int N=110,INF=0x3f3f3f3f,mod=1e9+7;
typedef long long LL;int n;
int a[N],b[N];
int f[N][N*N*2];void solve() {scanf("%d",&n);int sum=0;for(int i=1;i<=n;i++) scanf("%d",&a[i]),sum+=a[i];for(int i=1;i<=n;i++) scanf("%d",&b[i]),sum+=b[i];memset(f,0,sizeof(f));f[0][0]=1;for(int i=1;i<=n;i++) {for(int j=0;j<=sum;j++) {if(j>=a[i]) f[i][j]|=f[i-1][j-a[i]];if(j>=b[i]) f[i][j]|=f[i-1][j-b[i]];}}int ans=sum*sum;for(int i=0;i<=sum;i++) {if(!f[n][i]) continue;ans=min(ans,i*i+(sum-i)*(sum-i));}//cout<<sum<<' '<<ans<<endl;for(int i=1;i<=n;i++) {ans+=(n-2)*(a[i]*a[i]+b[i]*b[i]);}printf("%d\n",ans);
}int main() {int _; scanf("%d",&_);while(_--) {solve();}return 0;
}
/*
1
2
9 8
72 83
*/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/314456.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

各种逆元推导

逆元 求解一&#xff08;费马小定理&#xff09; ppp是一个质数&#xff0c;并且a%p̸0a \% p \not 0a%p​0&#xff0c;则有ap−1≡1(modp)a ^ {p - 1} \equiv 1 \pmod pap−1≡1(modp)&#xff0c;ap−2≡a−1a ^ {p - 2} \equiv a ^ {-1}ap−2≡a−1&#xff0c;即可得到…

使用Redis实现最近N条数据的决策

前言很多时候&#xff0c;我们会根据用户最近一段时间的行为&#xff0c;做出一些相应的策略&#xff0c;从而改变系统的运动轨迹。举个简单的例子来说明一下&#xff1a;假设A公司现在有两个合作伙伴(B和C)&#xff0c;B和C都是提供天气数据的&#xff0c;现在A公司做了一个聚…

CF 1635 D. Infinite Set 思维 + 二进制

文章目录题意思路传送门 题意 给你一个集合SSS&#xff0c;初始集合内含有nnn个数&#xff0c;让后按照一下三个规则无限的向集合中添加数&#xff1a; 对于所有的1≤i≤n,xai1\le i\le n,xa_i1≤i≤n,xai​都在集合中。对于所有的x2y1,y∈Sx2y1,y\in Sx2y1,y∈S&#xff0c…

2020杭电多校(二) New Equipments(最小费用最大流)

New Equipments 思路 数据已经有提示了b∗b<4∗a∗cb * b < 4 * a * cb∗b<4∗a∗c&#xff0c;这意味着&#xff0c;每一个a,b,ca, b, ca,b,c构成的二元一次方程只与xxx坐标最多相交一次&#xff0c;所以我们对每一个a∗i∗ib∗icya * i * i b * i c ya∗i∗ib∗…

为什么我不喜欢数据库三范式

插曲最近&#xff0c;一个远房亲戚的小表弟准备选修专业找到我问&#xff1a;"哥&#xff0c;现在学数据库有没有前途阿?""当然有啊&#xff0c;前途大大的呢""那我现在开始学数据库&#xff0c;需要先从什么开始呢?""学课程的话&#xf…

CF 1635E Cars 二分图 + 拓扑

文章目录题意思路传送门 题意 给你nnn个点&#xff0c;需要给每个点定向&#xff0c;方向可以向右或者向左&#xff0c;定向之后点会朝选择的方向移动&#xff0c;要求满足mmm个条件&#xff0c;两种不同的条件如下&#xff1a; i,ji,ji,j两个位置定向之后移动不会相遇。i,ji…

[CQOI2007]涂色PAINT

[CQOI2007]涂色PAINT 思路 显然我们可以考虑用dpdpdp来求解问题&#xff0c;碰到那种一眼没思路的题稳是dpdpdp没跑了&#xff0c;那么我们就往dpdpdp方面去考虑吧。 我们定义dp[i][j]dp[i][j]dp[i][j]&#xff0c;表示把[i,j][i, j][i,j]这个区间涂上颜色要用多少步&#x…

ASP.NET 自定义项目模板

前言在微服务架构盛行的时代&#xff0c;一言不合就新建一个服务&#xff0c;虽然搭建服务并没什么难度&#xff0c;但不可避免的是每个人搭建出来的架子会存在差异&#xff0c;这很合理&#xff0c;因为每个开发者的个人风格、工作经验都不一样&#xff0c;难免认为自己喜欢的…

CF372 C. Watching Fireworks is Fun 单调队列优化dp

文章目录题意思路传送门 题意 城镇中有nnn个位置&#xff0c;有mmm个烟花要放&#xff0c;第iii个烟花放出的时间记为tit_iti​&#xff0c;放出的位置记为aia_iai​。如果烟花放出的时候你在位置xxx&#xff0c;那么将收获bi−∣ai−x∣b_i-|a_i-x|bi​−∣ai​−x∣点的快乐…

中国剩余定理及其拓展

中国剩余定理 实质就是解nnn次互质的方程&#xff0c;然后分别乘以他们的取模剩余量&#xff0c;然后相加得到答案&#xff0c;这里就不展开叙述。 typedef long long ll; const int N 1e3 10; int a[N], b[N], n; void exgcd(ll a, ll b, ll &x, ll &y) {if(!b) {…

硬货 - 技术人也能轻松玩转公众号?正确姿势竟然是...

最近在知乎上看到关于「公众号是否有“前”途」的相关问题... 问题下面有些精华回答~微信公众号还有“前”途吗&#xff1f; - 知乎https://www.zhihu.com/question/324575670很好的问题&#xff01;作为一个技术人&#xff0c;我决定将此问题和自身情况结合起来&#xff0c;于…

BSGS及其拓展

BSGS 介绍 这是一个求解ax≡b(modp)a ^ {x} \equiv b \pmod pax≡b(modp)&#xff0c;的方法。并且ppp是质数&#xff0c;a,pa, pa,p互质&#xff0c;费马小定理可知&#xff0c;这个式子有周期性&#xff0c; 我们一般取msqrt(p)m sqrt(p)msqrt(p)&#xff0c;假设xi∗mj&…

CF 1642 F. Two Arrays 随机 + sosdp

文章目录题意思路传送门 题意 给你nnn个长度为mmm的数组&#xff0c;每个数组都有一个价值wiw_iwi​&#xff0c;让你选出两个数组他们没有交集且价值和最大&#xff0c;如果没有输出−1-1−1。 2≤n≤1e5,1≤m≤5,1≤ai,j,wi≤1e92\le n\le 1e5,1\le m\le 5,1\le a_{i,j},w_…

你必须知道的Dockerfile

本篇已加入《.NET Core on K8S学习实践系列文章索引》&#xff0c;可以点击查看更多容器化技术相关系列文章。本文预计阅读时间为5分钟。01—关于Dockerfile在Docker中创建镜像最常用的方式&#xff0c;就是使用Dockerfile。Dockerfile是一个Docker镜像的描述文件&#xff0c;我…

2019牛客暑期多校训练营(第五场)C generator 2 (BSGS)

2019牛客暑期多校训练营&#xff08;第五场&#xff09;C generator 2 思路 x0x0x_0 x_0x0​x0​ x1a∗x0∗bx_1 a * x_0 * bx1​a∗x0​∗b x2a∗x1ba2∗x0a∗bbx_2 a * x_1 b a ^{2} * x_0 a * b bx2​a∗x1​ba2∗x0​a∗bb 容易发现后项是一个等比数列求和 xnanx0…

RabbitMQ 死信/死信队列

一、RabbitMQ 死信/死信队列1、DLXDead Letter Exchange 的缩写DLX&#xff08;Dead Letter Exchanges&#xff09;死信交换&#xff0c;死信队列本身也是一个普通的消息队列&#xff0c;在创建队列的时候&#xff0c;通过设置一些关键参数&#xff0c;可以将一个普通的消息队列…

AtCoder Regular Contest 059

文章目录C - Be TogetherD - UnbalancedE - Children and CandiesF - Unhappy Hacking题目链接 C - Be Together 200200200分 结论 直接取所有数的平均数&#xff0c;由于需要是整数&#xff0c;所以算一下mid,mid1,mid−1mid,mid1,mid-1mid,mid1,mid−1&#xff0c;取最小值…

P2303 [SDOI2012] Longge 的问题

P2303 [SDOI2012] Longge 的问题 思路 我们显然可以枚举每一对数的gcdgcdgcd进行求解&#xff0c;进而我们有如下推导&#xff1a; >∑i1ngcd(i,n)>\sum _{i 1} ^ {n} gcd(i, n)>i1∑n​gcd(i,n) >∑d∣nd∑i1n(gcd(i,d)d)>\sum _{d \mid{n}} d \sum _{i 1}…

centos7 rabbitmq安装/配置

一、RabbitMQ简单介绍RabbitMQ就是当前最主流的消息中间件之一。RabbitMQ是一个开源的AMQP实现&#xff0c;服务器端用Erlang语言编写&#xff0c;支持多种客户端&#xff0c;如&#xff1a;Python、Ruby、.NET、Java、JMS、C、PHP、ActionScript、XMPP、STOMP等&#xff0c;支…

Xor Path

Xor Path 思路 先是看错题目&#xff0c;以为是所有的路径异或值的和&#xff0c;然后好像用了个假的print函数&#xff0c;一直wa&#xff0c;&#xff0c;&#xff0c; 既然是异或&#xff0c;那么当一个点出现的次数是偶数次的时候它会被自己异或成零&#xff0c;也就是队…