IBM对话智能+未来:十年提升AI性能效率千倍?

640?wx_fmt=jpeg

来源:云科技时代


140多前的1879年,爱迪生经过几千次试验发明了电灯;之后过了90年的1969年美国把人类送到了月球,1970年空中客车公司诞生。在1870年代,人类初次进入电力时代的时候,没有人能够想到有一天人类可以乘“电”飞上月球、普通人也可商用飞行。而今天,我们初次进入了“智能+”时代,人工智能应用刚刚进入“电灯”阶段;未来,智能计算将把人类送往什么样的 “月球”?开发出什么样的人工智能“空中客车”?


人工智能是“智能+”时代的新“电能”。从1732年富兰克林首次发现了电的存在,到爱迪生又不断试验发明了电灯进而于1882年建立了人类第一个电厂,这150年间人们不断怀疑“电”是魔法和神秘力量的产物,由此而经历了不理解、回避、拒绝和恐惧的初级电力时代。“同样的情况正发生今天人们对人工智能的认知上,”IBM云与认知软件高级副总裁Arvind Kirshna在2019美国Think大会上如是表示,“人工智能不是‘魔法’,人工智能就像‘电’一样存在,而且在彻底改变商业。”


PWC普华永道的预测是,到2030年,人工智能将带来全球GDP增长近16万亿美元。而在人类的信息技术历史上,还没有哪种技术堪比人工智能的这种超巨型经济影响力。而在另一方面,我们今天仍处于初级人工智能时代。根据Gartner和信通院联合编制的2018世界人工智能产业发展蓝皮书发布,人工智能仍处于早期采用阶段,仅有4%的被调研企业已经投资并部署了AI技术。


2019年5月21日,以“‘智能+’时代,我们与科技的对话”为主题的2019 IBM中国论坛,诠释了人类在人工智能初级时代要做的事情——通过与科技的对话,打开想像的空间。在2019年2月,IBM研究院还牵头成立了AI硬件中心,通过与科研和产业界的协作,要在未来十年提升AI性能效率千倍,加速人工智能“空中客车”到来的进程。


AI硬件加速创新:人工智能“空中客车”


众所周知,以神经网络为代表的人工智能计算对于芯片等计算硬件体系带来了极大的挑战,现有的基于冯·诺伊曼架构的计算硬件体系已经遭遇瓶颈,而摩尔定律也在失效。面向未来的“智能+”时代,量子计算是长期趋势和解决方案。IBM已经在量子计算方面投入了大量研究,并在2019美国CES展以及IBM Think大会上,展示了目前全球唯一一台脱离实验室环境运行的量子计算机“IBM Q System One”。


不过,当前离量子计算机商用和量产还较远,更现实的解决方案是改造现有的芯片硬件架构,以满足当下的人工智能计算需求。


2019年2月成立的IBM研究院AI硬件中心(IBM Research AI Hardware Center),就是为了应对未来十年的智能计算需求而投资的研究机构。该机构为开放式研究方式,将与其它研究机构和产业公司一起对话及合作,共同加速面向AI优化的硬件创新。其中,商业和产业合作伙伴有Samsung、Mellanox Technologies、Synopsys、Applied Materials、Tokyo Electron Limited(TEL)等。


经典的冯·诺伊曼架构在应对人工智能计算时,其主要挑战在于处理器/存储器带宽瓶颈,因为人工智能计算属于大规模并行计算,而这个计算模式并不是当前CPU的设计初衷。虽然今天的AI系统已经在高带宽CPU和GPU、专门的AI加速器、高性能网络设备等方面取得了进展,但要保持沿着这个方向的跃进,仍然需要投入大量的研究。IBM研究院AI硬件中心的目标是将当前的人工智能系统性能效率在未来十年提升千倍。为了达到这个目标,IBM与众多合作伙伴一起,推进从芯片、材料、架构等硬件到支持AI计算任务软件的创新。


640?wx_fmt=jpeg


(IBM研究院AI硬件中心正在开发未来10年提升AI计算性能效率千倍的路线图)


IBM研究院AI硬件中心主要推动IBM和生态伙伴们,在IBM的数字AI内核(Digital AI Cores)以及基于内存计算的模拟AI内核(Analog AI Cores)等技术基础上,展开“千里大跃进”。IBM认为,基于现有技术的深度学习计算能在2020年左右达到1000GFlops/W的计算能力;基于数字AI内核技术的深度学习计算能在2021年左右达到接近1万GFlops/W的计算能力,也就是十倍能力的提升;而基于模拟AI内核技术的深度学习计算能在2023年左右达到接近5万GFlops/W的计算能力,结合了优化的材料后则能在2025年左右推进深度学习计算达到10万GFlops/W的计算能力,并进一步在2030年左右达到100万GFlops/W的计算能力,也就是今天计算能力的千倍提升。


IBM研究院半导体及AI硬件副总裁Mukesh Khare就此撰文指出:硬件在狭义AI技术的成熟过程中扮演着基础性角色,而IBM推动的下一波硬件创新将起到更加重要的作用。IBM研究院将聚集于多年期的技术路线图,以为业界开发和交付专用加速内核、芯片架构等,大幅提升AI系统的性能。虽然当前AI系统的千倍性能提升还不能达到“登月”的效果,但足以让人工智能“空中客车”的到来成为可能。


AI软件加速创新:扩大数字化转型范围


如果说量子计算是“智能+”的长期趋势、AI硬件创新是“智能+”的中期趋势,那么AI软件创新就是当下的“智能+”趋势。正如Gartner研究副总裁John-David Lovelock在对2019全球IT支出预测时所表示的,虽然人工智能正在对IT支出产生重大影响,但它的作用经常被误解——人工智能并不是一种产品,而是一套技术或一门计算机工程学科。正因如此,人工智能被嵌入到许多现有的产品和服务中,并成为每个行业新研发计划的核心。


AI软件创新,就是在现有的硬件基础上,让AI能力可以具象到具体的产品、服务和企业中。2019年4月,IBM在大中华区发布2019《认知型企业:发挥人工智能优势,全面重塑企业——七大成功要素》报告指出,企业需要充分利用呈指数级发展的技术,“由内而外”地展开全面的数字化重塑,打造新型的商业模式,这就是“认知型企业”。认知型企业能够自动在企业外部收集、了解客户需求,再充分发挥人工智能的优势,从内部的平台、架构、数据、人才等关键的企业内核任务作出反应和决策,更好应对复杂的客户需求和多变的竞争环境。


640?wx_fmt=jpeg


“认知型企业”对于数字化转型来说非常重要,也是数字化转型的第二篇章,即数字化重塑。而建立“认知型企业”,扩大数字化转型进入到数字化重塑,就需要把AI嵌入到企业的方方面面,这就需要把AI软件进行基础设施化和平台化。实际上,在过去几年的AI商业大发展初期阶段,最大的问题就在于碎片化的AI软件和服务。仅在中国市场,截止到2018年5月,就有超过4000家人工智能企业,由此而带来了大量碎片化的AI软件与服务,而企业在选择这些AI软件与服务时往往无所适从。


多人工智能环境是继多云环境后,企业数字化转型与数字化重塑所面临的多种数字技术集成难题,也是扩展人工智能应用的重大挑战。2018年10月,IBM推出了AI OpenScale,面向多云环境支持多种开源AI算法,包括谷歌TensorFlow、微软AzureML、SparkML、Keras、Seldon以及AWS的SageMaker等,帮助企业统一集成管理各类AI算法框架和软件。而支持AI OpenScale的IBM Cloud Private私有云软件则基于当下最流行的Kubernetes,天然可跨多种云及IT环境,特别是IBM Power System等专为企业级工作负载而设计的服务器系统。在此基础上,IBM Watson能够运行在任意的IT环境中。而在扩展AI方面,IBM还在用AI管理AI,例如IBM Watson Studio就用AI自动选择适用的AI算法等。


在AI平台以及AI的基础设施之外,IBM还在将Watson的能力扩散到各种商业应用软件中。嵌入在Watson Campaign Automation SaaS解决方案中的IBM Watson Assistant for Marketing功能,可以帮助营销人员通过 Watson 将繁忙的营销工作转换为简单的对话;定制的Watson工具集,可帮助工业企业使用视觉和听觉检测功能,显著降低对产品检测资源的需求;IBM推出的AI functionality for HR 能够分析背景各异的现有优秀员工的背景信息,帮助招聘经理甄选合格申请人;Watson Decision Platform for Agriculture农业智能平台可收集多个来源的数据,如接入天气信息、连接物联网的拖拉机和灌溉装备以及卫星图像等,并通过简单易用的 APP 提供单一的总体预测性农场视图等等。


AI信任与人才:可持续发展的智能+未来


在“智能+”时代的当下及中长期趋势之外,AI信任与AI人才是一个可持续“智能+”未来的基石。多项人工智能相关调研显示,AI人才短缺以及缺乏对AI的信任,是企业难以采用和扩展使用人工智能的重要前提。正如从发现电的存在到人类第一个电厂之间的150年,当时的人们同样也缺乏相关的电力电能等人才以及对于电的信任。不过好在现在的人类已经有了应对陌生新技术的经验,以及IBM这样大规模商业推广新技术的企业。


在建立人们对AI信任方面,IBM认为一个可信任的AI系统,需要遵循几个基础原则:公平性(Fairness),即AI系统应该采用不带偏见的数据集和模型,从而避免对于特定群体的不公平;健壮性(Robustness),即AI系统应该安全和可靠,不会被篡改,也不会受被“污染”的训练数据集影响;可解释性(Explainability),即AI系统所提供的决策或建议,应该能够被用户和开发者所理解;可追踪(Lineage),即AI系统的开发、部署、维护等可被追踪,能够在生命周期范围内被审计等。


IBM不仅提出了开发新型人工智能技术的信任原则和透明度原则,而且还将这些原则付诸实践。IBM推出了一项旨在提高人工智能透明度的技术,这是一项基于IBM云计算的软件服务,能够在人工智能进行决策时自动检测偏向性并能够对决策过程进行解释,从而帮助各行各业的组织管理人工智能系统。IBM服务部门也将与企业一同合作,帮助他们更好地利用这一软件服务。


作为Partnership on AI的创始成员之一,IBM长期以来一直关注人工智能的安全、透明、可信赖以及合理发展。IBM研究院还向开源社区提供AI Fairness 360工具包,其中包括一系列新型算法、代码和教程的资源库,可为专业学者、研究者和数据专家提供在构建和部署机器学习模型时整合偏向性检测功能的工具和知识。


640?wx_fmt=jpeg


当然,IBM也在通过技术手段,建立人们对AI的信任。2018年的IBM人工智能辩论系统Project Debater,就是这样一种人与科技的对话,通过人类辩手和人工智能辩手Project Debater之间的辩论较量,让人们更好的理解人工智能的能力和优缺点。辩论本身不是因为冲突或竞争,而是更有建设性的讨论,辩论丰富了决策制定的过程,帮助人们权衡新想法、新理念的利弊。辩论也是为了理解和学习彼此的观点,因此Project Debater就通过人机辩论这种创新对话的方式,建立人们对于人工智能的信任。


而在AI人才培养方面,在2019美国IBM Think大会上,IBM宣布推出了AI Learning and Certification Program,包括到IBM研究院场所的现场培训和研讨、在线培训课程以及IBM提供的AI认证,特色课程有AI模型偏见检验检测等。也就是说,IBM通过培训把人才培养以及对AI的信任连接起来,以确保可持续的智能+未来。

IBM董事长、总裁兼首席执行官Ginni Rometty 曾表示 :“IBM致力于引领改变世界运作方式的技术——并解决许多人尚未想到的问题。”在2018年,IBM共获得了9100项专利,其中一半的专利涉及人工智能、区块链、量子计算、安全和云技术。2018年是IBM 连续第 26 年成为专利领导者,这让IBM超过了总共110,000项专利的里程碑。

正是在雄厚的技术发明创造能力之上,IBM在全球范围内推进人工智能从“电能”到“电厂”再到广泛应用以及更进一步发明“空中客车”的进程。当AI性能效率提升千倍时,“智能+”的大时代就真正到来了。


未来智能实验室是人工智能学家与科学院相关机构联合成立的人工智能,互联网和脑科学交叉研究机构。


未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。


  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”


640?wx_fmt=jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/491791.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【转】chrome浏览器的跨域设置——包括版本49前后两种设置

做前后分离的webapp开发的时候,出于一些原因往往需要将浏览器设置成支持跨域的模式,好在chrome浏览器就是支持可跨域的设置,网上也有很多chrome跨域设置教程。但是新版本的chrome浏览器提高了跨域设置的门槛,原来的方法不再适用了…

中国信通院:2019年Q1全球人工智能产业数据报告

来源:网络大数据近日,中国信息通信研究院数据研究中心发布了《全球人工智能产业数据报告(2019Q1)》。报告以中国信息通信研究院数研中心人工智能产业数据库为基础,从企业研究、投融资研究、论文等角度出发,结合产业发展热点&#…

数据库一对一,一对多,多对多关系

关联映射:一对多/多对一 存在最普遍的映射关系,简单来讲就如球员与球队的关系; 一对多:从球队角度来说一个球队拥有多个球员 即为一对多 多对一:从球员角度来说多个球员属于一个球队 即为多对一 数据表间一对多关系如下…

一文读懂产业互联网的前世今生!

来源:全球物联网观察摘要:随着云计算等企业级技术应用的发展普及, 产业互联网实际已经在各行各业展开实践。广度上不仅覆盖服务业、工业和农业,还从商业扩展到公益和政府,整个社会走向全面互联;深度上从营销…

反对量子计算的理由

来源: 悦智网量子计算如今十分流行。几乎每天都有新闻媒体发布相关新闻。其实人类研究量子计算已经长达几十年,却未得出任何实用的结果,大多数评论员都忘记或者掩饰了这一事实。 IBM指出量子计算机能够“使很多学科领域取得突破性进展&#x…

吴恩达《机器学习》学习笔记一——初识机器学习

吴恩达《机器学习》学习笔记一一、 什么是机器学习?二、监督学习三、无监督学习初识机器学习这是个人学习吴恩达《机器学习》课程的一些笔记,供自己和大家学习提升。第一篇内容较少,日后继续加油。课程链接:https://www.bilibili.…

院士张钹:AI奇迹短期难再现 深度学习技术潜力已近天花板

来源:软件定义世界(SDX)在Alphago与韩国围棋选手李世石对战获胜三年过后,一些迹象逐渐显现,张钹院士认为到了一个合适的时点,并接受了此次的专访。张钹,计算机科学与技术专家,俄罗斯…

吴恩达《机器学习》学习笔记二——单变量线性回归

吴恩达《机器学习》学习笔记二——单变量线性回归一、 模型描述二、 代价函数1.代价函数和目标函数的引出2.代价函数的理解(单变量)3.代价函数的理解(两个参数)三、 梯度下降——求解最优参数1.梯度下降的步骤2.梯度下降的数学表达…

吴恩达《机器学习》学习笔记三——多变量线性回归

吴恩达《机器学习》学习笔记三——多变量线性回归一、 多元线性回归问题介绍1.一些定义2.假设函数二、 多元梯度下降法1. 梯度下降法实用技巧:特征缩放2. 梯度下降法的学习率三、 特征选择与多项式回归四、 正规方程法1. 一些定义2. 正规方程解的公式3. 梯度下降法和…

五大核心构成的AIoT,正在遭遇三大挑战,两条突破口外还有什么?

来源:物联网智库随着IoT与AI逐步走向融合,AIoT正将以全新的方式改变人们的生活。一、新业务需求近年来,物联网呈现突飞猛进的发展态势。根据中商情报网的数据,2018年全球物联网设备已经达到70亿台;到2020年&#xff0c…

机器学习中防止过拟合的方法总结

来自机器学习成长之路公众号 在对模型进行训练时,有可能遇到训练数据不够,即训练数据无法对整个数据的分布进行估计的时候,或者在对模型进行过度训练(overtraining)时,常常会导致模型的过拟合(…

吴恩达《机器学习》学习笔记四——单变量线性回归(梯度下降法)代码

吴恩达《机器学习》学习笔记四——单变量线性回归(梯度下降法)代码一、问题介绍二、解决过程及代码讲解三、函数解释1. pandas.read_csv()函数2. DataFrame.head()函数3. Dataframe.insert()函数课程链接: https://www.bilibili.com/video/BV…

从IoT World 2019看全球IoT九大发展趋势

来源:全球物联网观察美国时间5月14日,IoT World2019在美国硅谷圣克拉拉会议中心举行,今年的主题是“工业与IOT的交互”,从大会主题演讲内容和现场产品展示来看,随着5G的商用和人工智能技术的大面积落地,IoT…

美国一箭投放60颗卫星 马斯克组互联网“星链”

来源:新华网美国太空探索公司当地时间23日晚在美国佛罗里达州一处空军基地发射火箭,将60颗小卫星送入近地轨道。这标志着企业家埃隆马斯克组建互联网卫星群的“星链”项目迈出实质性一步,抢在电子商务巨头亚马逊公司创始人杰夫贝索斯的“柯伊…

吴恩达《机器学习》学习笔记五——逻辑回归

吴恩达《机器学习》学习笔记五——逻辑回归一、 分类(classification)1.定义2.阈值二、 逻辑(logistic)回归假设函数1.假设的表达式2.假设表达式的意义3.决策界限三、 代价函数1.平方误差函数的问题2.logistic回归的代价函数四、梯…

协方差与相关系数

定义: 协方差用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。 期望值分别为E[X]与E[Y]的两个实随机变量X与Y之间的协方差Cov(X,Y)定义为: 如果两个变量的变化趋势一致,也就是说如果其中一…

吴恩达《机器学习》学习笔记六——过拟合与正则化

吴恩达《机器学习》学习笔记六——过拟合与正则化一、 过拟合问题1.线性回归过拟合问题2.逻辑回归过拟合问题3.过拟合的解决二、 正则化后的代价函数1.正则化思想2.实际使用的正则化三、 正则化的线性回归1.梯度下降的情况2.正规方程的情况四、 正则化的逻辑回归1.梯度下降的情…

5G时代,智能工厂迎来4大改变!

来源:亿欧网作为新一代移动通信技术,5G技术切合了传统制造企业智能制造转型对无线网络的应用需求,能满足工业环境下设备互联和远程交互应用需求。在物联网、工业自动化控制、物流追踪、工业AR、云化机器人等工业应用领域,5G技术起…

主成分分析PCA以及特征值和特征向量的意义

定义: 主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。PCA的思想是将n维特征映射到k维上…

吴恩达《机器学习》学习笔记七——逻辑回归(二分类)代码

吴恩达《机器学习》学习笔记七——逻辑回归(二分类)代码一、无正则项的逻辑回归1.问题描述2.导入模块3.准备数据4.假设函数5.代价函数6.梯度下降7.拟合参数8.用训练集预测和验证9.寻找决策边界二、正则化逻辑回归1.准备数据2.特征映射3.正则化代价函数4.…