Python存储生成的决策树——pickle模块

假设通过训练样本生成的决策树为:

{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}

利用pickle模块可以存储和加载该决策树

tree = {'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}def storeTree(inputTree, filename):import picklefw = open(filename, 'wb')pickle.dump(inputTree, fw)fw.close()def grabTree(filename):import picklefr = open(filename, 'rb')return pickle.load(fr)storeTree(tree, r"D:\picture\tree.txt")
mytree = grabTree(r"D:\picture\tree.txt")print(mytree) # {'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/491780.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

让引擎不再是你的唯一,对百度再见

信息的传播是人的本性,特别是,对于自己的喜恶事事务。华斯康技术已经做了一项调查,在空调、身体、洗发水、房屋及其他产品的购买过程,分别为,53%、49%、35%和32%消费者,新产品信息。而且分别有35%、28%、15…

院士张钹:AI奇迹短期难再现 深度学习技术潜力已近天花板

来源:软件定义世界(SDX)在Alphago与韩国围棋选手李世石对战获胜三年过后,一些迹象逐渐显现,张钹院士认为到了一个合适的时点,并接受了此次的专访。张钹,计算机科学与技术专家,俄罗斯…

Python获得某个范围的的随机整数

numpy.random.randint(low, highNone, sizeNone, dtypel) 产生[low~high)范围内的整数,不包括high import numpy as npa np.random.randint(0, 2, 10) print(a) # [0 0 1 1 0 0 1 0 0 0]

吴恩达《机器学习》学习笔记二——单变量线性回归

吴恩达《机器学习》学习笔记二——单变量线性回归一、 模型描述二、 代价函数1.代价函数和目标函数的引出2.代价函数的理解(单变量)3.代价函数的理解(两个参数)三、 梯度下降——求解最优参数1.梯度下降的步骤2.梯度下降的数学表达…

吴恩达《机器学习》学习笔记三——多变量线性回归

吴恩达《机器学习》学习笔记三——多变量线性回归一、 多元线性回归问题介绍1.一些定义2.假设函数二、 多元梯度下降法1. 梯度下降法实用技巧:特征缩放2. 梯度下降法的学习率三、 特征选择与多项式回归四、 正规方程法1. 一些定义2. 正规方程解的公式3. 梯度下降法和…

五大核心构成的AIoT,正在遭遇三大挑战,两条突破口外还有什么?

来源:物联网智库随着IoT与AI逐步走向融合,AIoT正将以全新的方式改变人们的生活。一、新业务需求近年来,物联网呈现突飞猛进的发展态势。根据中商情报网的数据,2018年全球物联网设备已经达到70亿台;到2020年&#xff0c…

机器学习中防止过拟合的方法总结

来自机器学习成长之路公众号 在对模型进行训练时,有可能遇到训练数据不够,即训练数据无法对整个数据的分布进行估计的时候,或者在对模型进行过度训练(overtraining)时,常常会导致模型的过拟合(…

iOS:面向对象的思想使用sqlite数据库

SQLite支持的常见数据类型如下所示。–INTEGER 有符号的整数类型–REAL 浮点类型–TEXT 字符串类型,采用UTF-8和UTF-16字符编码–BLOB 二进制大对象类型,能够存放任何二进制数据(C语言中)使用步骤:1.新建项目时,先导入系统框架(C语言). (libsqlite3&…

吴恩达《机器学习》学习笔记四——单变量线性回归(梯度下降法)代码

吴恩达《机器学习》学习笔记四——单变量线性回归(梯度下降法)代码一、问题介绍二、解决过程及代码讲解三、函数解释1. pandas.read_csv()函数2. DataFrame.head()函数3. Dataframe.insert()函数课程链接: https://www.bilibili.com/video/BV…

从IoT World 2019看全球IoT九大发展趋势

来源:全球物联网观察美国时间5月14日,IoT World2019在美国硅谷圣克拉拉会议中心举行,今年的主题是“工业与IOT的交互”,从大会主题演讲内容和现场产品展示来看,随着5G的商用和人工智能技术的大面积落地,IoT…

TensorFlow实现单隐层神经网络

这里使用MNIST数据集,MNIST数据集的下载地址http://yann.lecun.com/exdb/mnist/ from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf mnist input_data.read_data_sets(r"D:\PycharmProjects\tensorflow\MNIST_data"…

美国一箭投放60颗卫星 马斯克组互联网“星链”

来源:新华网美国太空探索公司当地时间23日晚在美国佛罗里达州一处空军基地发射火箭,将60颗小卫星送入近地轨道。这标志着企业家埃隆马斯克组建互联网卫星群的“星链”项目迈出实质性一步,抢在电子商务巨头亚马逊公司创始人杰夫贝索斯的“柯伊…

Ubuntu 中Mysql 操作

一、mysql服务操作 0、查看数据库版本 sql-> status; 1、net start mysql //启动mysql服务 2、net stop mysql //停止mysql服务  3、mysql -h主机地址 -u用户名 -p用户密码 //进入mysql数据库 4、quit //退出mysql操作 5、mysqladmin -u用户名 -p旧密码 passwor…

吴恩达《机器学习》学习笔记五——逻辑回归

吴恩达《机器学习》学习笔记五——逻辑回归一、 分类(classification)1.定义2.阈值二、 逻辑(logistic)回归假设函数1.假设的表达式2.假设表达式的意义3.决策界限三、 代价函数1.平方误差函数的问题2.logistic回归的代价函数四、梯…

协方差与相关系数

定义: 协方差用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。 期望值分别为E[X]与E[Y]的两个实随机变量X与Y之间的协方差Cov(X,Y)定义为: 如果两个变量的变化趋势一致,也就是说如果其中一…

吴恩达《机器学习》学习笔记六——过拟合与正则化

吴恩达《机器学习》学习笔记六——过拟合与正则化一、 过拟合问题1.线性回归过拟合问题2.逻辑回归过拟合问题3.过拟合的解决二、 正则化后的代价函数1.正则化思想2.实际使用的正则化三、 正则化的线性回归1.梯度下降的情况2.正规方程的情况四、 正则化的逻辑回归1.梯度下降的情…

Swift - 数组排序方法(附样例)

下面通过一个样例演示如何对数组元素进行排序。数组内为自定义用户对象,最终要实现按用户名排序,数据如下: 1234var userList [UserInfo]()userList.append(UserInfo(name: "张三", phone: "4234"))userList.append(Use…

5G时代,智能工厂迎来4大改变!

来源:亿欧网作为新一代移动通信技术,5G技术切合了传统制造企业智能制造转型对无线网络的应用需求,能满足工业环境下设备互联和远程交互应用需求。在物联网、工业自动化控制、物流追踪、工业AR、云化机器人等工业应用领域,5G技术起…

主成分分析PCA以及特征值和特征向量的意义

定义: 主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。PCA的思想是将n维特征映射到k维上…

吴恩达《机器学习》学习笔记七——逻辑回归(二分类)代码

吴恩达《机器学习》学习笔记七——逻辑回归(二分类)代码一、无正则项的逻辑回归1.问题描述2.导入模块3.准备数据4.假设函数5.代价函数6.梯度下降7.拟合参数8.用训练集预测和验证9.寻找决策边界二、正则化逻辑回归1.准备数据2.特征映射3.正则化代价函数4.…