五大核心构成的AIoT,正在遭遇三大挑战,两条突破口外还有什么?

640?wx_fmt=jpeg

来源:物联网智库


随着IoT与AI逐步走向融合,AIoT正将以全新的方式改变人们的生活。


一、新业务需求


近年来,物联网呈现突飞猛进的发展态势。根据中商情报网的数据,2018年全球物联网设备已经达到70亿台;到2020年,活跃的物联网设备数量预计将增加到100亿台,2025年将进一步增加到220亿台。全球物联网产业规模由2008年的500亿美元增长至2018年的近1510亿美元。


在中国,物联网的大规模应用与新一轮科技和产业变革的融合发展,预计2025年中国物联网连接数将达到53.8亿。

640?wx_fmt=jpeg

随着物联网设备规模的迅速扩大,工厂所产生的数据规模也正以极高的速度发生“膨胀”,单纯依靠人工处理越来越难以为继,企业急需一些智能化手段,以完成对数据的处理、流程的优化,AI的出现恰到好处。

640?wx_fmt=jpeg物联网发展至今,已经从最开始的未连接状态发展至智能化,所带来的价值也将变得越来越大。AI的引入,一定程度上是发展的必然。AI与IoT的融合,将加速智能化进程,充分发挥物联网的价值。

640?wx_fmt=jpeg

据IDC预测,中国人工智能市场未来五年将处于高速发展阶段,2018年底中国人工智能市场规模将达到22.9亿美元,IDC预测到2022年市场规模将达到98.4亿美元,2017-2022年复合增长率达到54.5%。而在技术的发展方向方面,流程重构、合规治理及洞察服务等无疑是难度最高且极为重要的。

640?wx_fmt=jpeg

与此同时,IDC在另一份报告中也作出了自2019年起对全球制造业的十大预测,包括:

预测4:到2020年,为了提高速度,灵活性,效率和创新,80%的制造商需要进行广泛的重组,将数据置于流程的中心。

预测2:到2022年,35%的制造企业将通过借助以AI和区块链为中心的平台创建新的生态系统,从而实现50%的流程自动化。

预测6:到2024年,超过60%的G2000制造企业将依靠人工智能平台来推动整个供应链的数字化转型,从而使生产率提高20%以上。


640?wx_fmt=jpeg

我们由此可以看出,企业、尤其是产出大量数据的制造业对自动化、智能化的需求愈加迫切,传统的自动化、联网化已经越来越无法满足需求。从市场的需求看,随着企业智能化新业务的产生,愈加迫切的需求促成了AI与IoT的融合。

640?wx_fmt=jpeg


二、AIoT全解析


以众所周知的互联网为例,它是由设备、网络等基础设施及各种丰富多彩的应用构成的。倘若没有基础设施,再精彩的应用也只是空中楼阁,而没有丰富的应用为支撑,互联网的魅力也只能是一个个独立的机器。


与之类似的,如果我们将AIoT进行粗略分类,大抵也可以分为这样两类:基本组成部分与应用程序。


1.  基本组成“元素”


AIoT是指AI与IoT的互补融合,因此在组成上,几乎涵盖两种技术的核心“精华”。如果我们追本溯源,将AIoT进行分类,可分为数据、连接、用户、流程、可视化等五大类。


数据


数据是AIoT非常核心且基础的部分。对于IoT来讲,几十亿台设备的联网所产生的数据量远超人力所能及,而数据又是物联网的主要产出。

640?wx_fmt=jpeg

正如前文所讲的那样,数据规模正变得越来越“庞大”。 据IDC预测,物联网设备产生的数据从将2013年的0.1ZB增长到2020年的4.4ZB。


AI与IoT的融合正是以数据为依托的。对于AI来讲,数据是其发展的养料,源源不断的庞大数据量为其感知、处理和进步奠定了基础。


连接


连接的价值毋庸置疑,无论是设备联网,亦或AI的接入,所有的一切都需要连接。没有连接,AIoT的所有功能都将成为美好的愿景。

640?wx_fmt=jpeg

过去的2018年里,国内的物联网连接呈现“大象狂奔”的态势。知名市场研究公司Counterpoint曾发布报告显示,截止2018年年中,中国的三大运营商物联网连接数已占据全球蜂窝物联网60%以上份额,预计到2025年依然保持在60%以上。


用户


所有一切新兴技术,最终服务的对象都是人。因此,用户的直观体验至关重要。


在智能家居等C端领域,用户更加在乎的是设备“懂我”,期望智能产品能够满足自己“饭来张口、衣来伸手”的“懒人”生活;在工业等B端领域,企业客户更加需要搭载AIoT的智能产品能够降低成本,提高效率等。


因此,满足用户的需求是AIoT的重点方向,需要针对不同群体需求达到真正智能。


流程


AI与IoT的融合,是在IoT广泛连接物联设备的基础之上的。为什么IoT之后仍需要AI助力?因为连接不是目的,智能才是方向。


目前的物联网设备大都存在流程的冗余,通过AIoT的帮助,对于个人用户来讲,设备将更加好用智能、速度更快;对于工厂企业来讲,节省了成本,提高了效率。

 

可视化


物联网设备所产生的大量数据,一定程度上包含着无论是机器设备,亦或者个人用户的关键信息。对于企业来讲,能够真正将这些信息利用起来,并成为可视化的、可量化的资源显得尤为重要。


AIoT时代,将数据等信息可视化的表现出来,不仅能够将数据与业务紧密联系,也能帮助企业及时发现市场趋势,以为更多应用的开发提供智能化辅助。


2.应用


不只是基础组成“元素”,如何让AIoT得以发挥巨大效用才是重中之重。在AIoT的落地环节,仍然需要各种服务及平台作为支撑,从而将其强大能力具体显现。


在AIoT落地过程中,不外乎需要一些基建服务、运营平台、生产力平台以及分析平台。


对于用户来讲,通过雷达、wifi等基建服务可以保障AIoT的基本功能,为后期的运营分析等奠定基础。


运营平台则包括智能手机、工厂管理系统等,用户可以通过平台有效管理其上搭载AIoT的设备。


分析处理能力是AIoT非常关键的能力之一,在具体的分析管理中,平台的引入也为用户的可视化、易管理提供了帮助,因此分析平台也十分必要。


综上来看,AIoT的这些落地需求也存在着新的商机,尤其为系统集成商、服务提供商和咨询公司等带来了新的机会。


三、企业AIoT战略


对于企业来讲,AIoT存在着非常巨大的价值。雷军此前坦言,5G+AIoT将是下一代超级互联网。


尽管价值巨大,看起来非常诱人,但企业若想要能够真正分一杯羹,着实存在一些挑战,但风险与收益同在,挑战与机遇并存。


1.  商业挑战


任何新兴技术的引进,对于企业来讲,都存在挑战。尽管理论层面的数据可以显示出该技术的先进性,但技术与企业融合的难易程度、最终效果等等都存在不确定性。


对于企业而言,最迫切需要AIoT所带来的无外乎降低成本、提高利润率、增加收入。如何在真正落地中满足企业需求,是摆在企业心中的一大问号。


尽管智能化一直是人们对科技的高度向往,而AIoT能够将这一目标无比拉近,但是,利用AIoT降低成本并非易事。


首先,AI的投资多,见效慢。AI的前期投入相当庞大,无论是算力研发中硬件成本,还是人才的薪酬等投资都是巨大的。以AlphaGo为例,其算力相当于12000块常见的消费级1080TI TPU,所花费逾千万。而目前,人工智能相关岗位的薪酬也是非常之高的,甚至有消息称,年薪 25 万的 AI 工程师仅仅是白菜价。

640?wx_fmt=jpeg

昂贵的前期成本投入,并不能确保后期带来更高的收益,因此,对于企业来讲,AIoT是一项高额高风险的投资。


其次,模型的构建难,准确性也无法保证。传统工业领域的IT从业人员缺少模型的构建与管理经验,无法保证实现模型预测的准确性,也无法对模型进行全生命周期管理及升级,以更低成本和更高效率进行模型和算法的迭代。


正因此,企业很难从AIoT中获得利润率的提高,从而进一步抑制了企业对该技术的“兴趣”。


最后,因为企业在降低成本及提高利润率等方面存在问题,因此依靠AIoT增加收入也就变得更加困难。


2.  解决方法


但老话说的好:只要思想不滑坡,方法总比问题多。尽管现存的许多问题阻碍了AIoT的商业化进程,但与之相对应的解决方法总是有的。


首先。企业间以合作的形式,可以有效降低成本,获得更大利润。试想一下,原本一家企业做AIoT需要从AI及IoT全方位下手,但通过合作的方式,企业只需要专注于一小部分,例如数据、连接等等,通过互补合作的方式,可以有效降低成本、提高效率。


另外,企业需要创建新的“服务”模型。在AIoT所引领的智能化时代初期,用户的需求是逐步塑造与形成的,相对应的,新的商业模型存在很大发展空间,如何满足用户所需值得深入挖掘。


结语


AIoT是一个庞大的产业链,围绕它可以产生无限可能,价值是巨大的。但事物的发展不会一帆风顺,处于发展起步阶段的AIoT,在实际落地之中又有重重困境。尽管对企业来讲,解决问题的方法不止一个,但AIoT最终能否淬火之后达到繁荣生态,仍含有太多不确定性。


未来智能实验室是人工智能学家与科学院相关机构联合成立的人工智能,互联网和脑科学交叉研究机构。


未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。


  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”


640?wx_fmt=jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/491774.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器学习中防止过拟合的方法总结

来自机器学习成长之路公众号 在对模型进行训练时,有可能遇到训练数据不够,即训练数据无法对整个数据的分布进行估计的时候,或者在对模型进行过度训练(overtraining)时,常常会导致模型的过拟合(…

吴恩达《机器学习》学习笔记四——单变量线性回归(梯度下降法)代码

吴恩达《机器学习》学习笔记四——单变量线性回归(梯度下降法)代码一、问题介绍二、解决过程及代码讲解三、函数解释1. pandas.read_csv()函数2. DataFrame.head()函数3. Dataframe.insert()函数课程链接: https://www.bilibili.com/video/BV…

从IoT World 2019看全球IoT九大发展趋势

来源:全球物联网观察美国时间5月14日,IoT World2019在美国硅谷圣克拉拉会议中心举行,今年的主题是“工业与IOT的交互”,从大会主题演讲内容和现场产品展示来看,随着5G的商用和人工智能技术的大面积落地,IoT…

美国一箭投放60颗卫星 马斯克组互联网“星链”

来源:新华网美国太空探索公司当地时间23日晚在美国佛罗里达州一处空军基地发射火箭,将60颗小卫星送入近地轨道。这标志着企业家埃隆马斯克组建互联网卫星群的“星链”项目迈出实质性一步,抢在电子商务巨头亚马逊公司创始人杰夫贝索斯的“柯伊…

吴恩达《机器学习》学习笔记五——逻辑回归

吴恩达《机器学习》学习笔记五——逻辑回归一、 分类(classification)1.定义2.阈值二、 逻辑(logistic)回归假设函数1.假设的表达式2.假设表达式的意义3.决策界限三、 代价函数1.平方误差函数的问题2.logistic回归的代价函数四、梯…

协方差与相关系数

定义: 协方差用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。 期望值分别为E[X]与E[Y]的两个实随机变量X与Y之间的协方差Cov(X,Y)定义为: 如果两个变量的变化趋势一致,也就是说如果其中一…

吴恩达《机器学习》学习笔记六——过拟合与正则化

吴恩达《机器学习》学习笔记六——过拟合与正则化一、 过拟合问题1.线性回归过拟合问题2.逻辑回归过拟合问题3.过拟合的解决二、 正则化后的代价函数1.正则化思想2.实际使用的正则化三、 正则化的线性回归1.梯度下降的情况2.正规方程的情况四、 正则化的逻辑回归1.梯度下降的情…

5G时代,智能工厂迎来4大改变!

来源:亿欧网作为新一代移动通信技术,5G技术切合了传统制造企业智能制造转型对无线网络的应用需求,能满足工业环境下设备互联和远程交互应用需求。在物联网、工业自动化控制、物流追踪、工业AR、云化机器人等工业应用领域,5G技术起…

主成分分析PCA以及特征值和特征向量的意义

定义: 主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。PCA的思想是将n维特征映射到k维上…

吴恩达《机器学习》学习笔记七——逻辑回归(二分类)代码

吴恩达《机器学习》学习笔记七——逻辑回归(二分类)代码一、无正则项的逻辑回归1.问题描述2.导入模块3.准备数据4.假设函数5.代价函数6.梯度下降7.拟合参数8.用训练集预测和验证9.寻找决策边界二、正则化逻辑回归1.准备数据2.特征映射3.正则化代价函数4.…

从认知学到进化论,详述强化学习两大最新突破

来源:大数据文摘深层强化学习(deep RL)近年来在人工智能方面取得了令人瞩目的进步,在Atari游戏、围棋及无限制扑克等领域战胜了人类。通过将表征学习与奖励驱动行为相结合,深层强化学习又引发了心理学和神经科学领域的…

吴恩达《机器学习》学习笔记九——神经网络相关(1)

吴恩达《机器学习》学习笔记九——神经网络相关(1)一、 非线性假设的问题二、 神经网络相关知识1.神经网络的大致历史2.神经网络的表示3.前向传播:向量化表示三、 例子与直觉理解1.问题描述:异或XOR、同或XNOR2.单个神经元如何计算…

刚刚,科学家发现了一大堆解释人类进化的基因...

图片来源:《Nature Genetics》来源:中国生物技术网 5月27日发表在《Nature Genetics》上的一项新研究发现, 以前被认为在不同生物体中具有相似作用的数十种基因,实际上是人类独有的, 这或许有助于解释我们这个物种是如…

吴恩达《机器学习》学习笔记八——逻辑回归(多分类)代码

吴恩达《机器学习》笔记八——逻辑回归(多分类)代码导入模块及加载数据sigmoid函数与假设函数代价函数梯度下降一对多分类预测验证课程链接:https://www.bilibili.com/video/BV164411b7dx?fromsearch&seid5329376196520099118 之前笔记…

DeepMind 综述深度强化学习:智能体和人类相似度竟然如此高!

来源:AI科技评论近年来,深度强化学习(Deep reinforcement learning)方法在人工智能方面取得了瞩目的成就,从 Atari 游戏、到围棋、再到无限制扑克等领域,AI 的表现都大大超越了专业选手,这一进展…

吴恩达《机器学习》学习笔记十——神经网络相关(2)

吴恩达《机器学习》学习笔记十——神经网络相关(2)一、 代价函数二、 反向传播算法三、 理解反向传播算法四、 梯度检测五、 随机初始化1.全部初始化为0的问题2.随机初始化的思想六、 神经网络算法整体流程1.选择网络具体架构2.训练神经网络课程链接&…

吴恩达《机器学习》学习笔记十一——神经网络代码

吴恩达《机器学习》学习笔记十一——神经网络代码数据准备神经网络结构与代价函数初始化设置反向传播算法训练网络与验证课程链接:https://www.bilibili.com/video/BV164411b7dx?fromsearch&seid5329376196520099118 数据集链接:https://pan.baidu…

中国科研人员发明单晶体管逻辑结构新原理

▲随着晶体管不断缩小特征尺寸,集成电路的性能得以持续提升。然而在超小器件尺寸下,硅材料的物理极限导致了功耗的大幅提升,难以进一步持续减小晶体管的特征尺寸。来源:文汇网通过引入层状半导体,并依据其特性设计新型…

Java 内存模型

1、并发模型编程的分类 在并发模型编程中,我们需要解决两个关键问题:线程之间如何通信以及线程之间如何同步。线程之间的通信包括两种:共享内存和消息传递。 Java并发采用的是共享内存模型。 2、Java内存模型的抽象 Java内存模型的主要目标是…

PyTorch框架学习一——PyTorch的安装(CPU版本)

PyTorch框架学习一——PyTorch的安装(CPU版本)PyTorch简介PyTorch的安装(CPU版)机器学习/深度学习领域的学习都是需要理论和实践相结合的,而它们的实践都需要借助于一个框架来实现,PyTorch在学术界目前处于…