强化学习发现矩阵乘法算法,DeepMind再登Nature封面推出AlphaTensor

6325cfa5de0813dc72ec6a63307dcbee.png

来源:机器之心 微信公众号

DeepMind 的 Alpha 系列 AI 智能体家族又多了一个成员——AlphaTensor,这次是用来发现算法。

数千年来,算法一直在帮助数学家们进行基本运算。早在很久之前,古埃及人就发明了一种不需要乘法表就能将两个数字相乘的算法。希腊数学家欧几里得描述了一种计算最大公约数的算法,这种算法至今仍在使用。在伊斯兰的黄金时代,波斯数学家 Muhammad ibn Musa al-Khwarizmi 设计了一种求解线性方程和二次方程的新算法,这些算法都对后来的研究产生了深远的影响。

事实上,算法一词的出现,有这样一种说法:波斯数学家 Muhammad ibn Musa al-Khwarizmi 名字中的 al-Khwarizmi 一词翻译为拉丁语为 Algoritmi 的意思,从而引出了算法一词。不过,虽然今天我们对算法很熟悉,可以从课堂中学习、在科研领域也经常遇到,似乎整个社会都在使用算法,然而发现新算法的过程是非常困难的。

现在,DeepMind 用 AI 来发现新算法。

在最新一期 Nature 封面论文《Discovering faster matrix multiplication algorithms with reinforcement learning》中,DeepMind 提出了 AlphaTensor,并表示它是第一个可用于为矩阵乘法等基本任务发现新颖、高效且可证明正确的算法的人工智能系统。简单来说,使用 AlphaTensor 能够发现新算法。这项研究揭示了 50 年来在数学领域一个悬而未决的问题,即找到两个矩阵相乘最快方法。

b27e109c14d34a2a1266cfdc9e3622c0.jpeg

dd3be26b45567bd52560438dcd9548f7.jpeg

  • 论文地址 :

    https://www.nature.com/articles/s41586-022-05172-4

  • GitHub 地址:

    https://github.com/deepmind/alphatensor

AlphaTensor 建立在 AlphaZero 的基础上,而 AlphaZero 是一种在国际象棋、围棋和将棋等棋盘游戏中可以打败人类的智能体。这项工作展示了 AlphaZero 从用于游戏到首次用于解决未解决的数学问题的一次转变。

矩阵乘法

矩阵乘法是代数中最简单的运算之一,通常在高中数学课上教授。但在课堂之外,这种不起眼的数学运算在当代数字世界中产生了巨大的影响,在现代计算中无处不在。

a51626462f17f357f3b19e3aa1369501.jpeg

两个 3x3 矩阵相乘的例子。

你可能没注意到,我们生活中处处隐藏着矩阵相乘,如智能手机中的图像处理、识别语音命令、为电脑游戏生成图形等都有它在背后进行运算。遍布世界各地的公司都愿意花费大量的时间和金钱开发计算硬件以有效地解决矩阵相乘。因此,即使是对矩阵乘法效率的微小改进也会产生广泛的影响。

几个世纪以来,数学家认为标准矩阵乘法算法是效率最高的算法。但在 1969 年,德国数学家 Volken Strassen 通过证明确实存在更好的算法,这一研究震惊了整个数学界。

c20025f65a855d182bc0b869eafaa8e1.jpeg

标准算法与 Strassen 算法对比,后者少进行了一次乘法运算,为 7 次,而前者需要 8 次,整体效率大幅提高。

通过研究非常小的矩阵(大小为 2x2),Strassen 发现了一种巧妙的方法来组合矩阵的项以产生更快的算法。之后数十年,研究者都在研究更大的矩阵,甚至找到 3x3 矩阵相乘的高效方法,都还没有解决。

DeepMind 的最新研究探讨了现代 AI 技术如何推动新矩阵乘法算法的自动发现。基于人类直觉(human intuition)的进步,对于更大的矩阵来说,AlphaTensor 发现的算法比许多 SOTA 方法更有效。该研究表明 AI 设计的算法优于人类设计的算法,这是算法发现领域向前迈出的重要一步。

算法发现自动化的过程和进展

首先将发现矩阵乘法高效算法的问题转换为单人游戏。其中,board 是一个三维度张量(数字数组),用于捕捉当前算法的正确程度。通过一组与算法指令相对应的所允许的移动,玩家尝试修改张量并将其条目归零。

当玩家设法这样做时,将为任何一对矩阵生成可证明是正确的矩阵乘法算法,并且其效率由将张量清零所采取的步骤数来衡量。

这个游戏非常具有挑战性,要考虑的可能算法的数量远远大于宇宙中原子的数量,即使对于矩阵乘法这样小的情况也是如此。与几十年来一直是人工智能挑战的围棋游戏相比,该游戏每一步可能的移动数量要多 30 个数量级(DeepMind 考虑的一种设置是 10^33 以上。)

为了解决这个与传统游戏明显不同的领域所面临的挑战,DeepMind 开发了多个关键组件,包括一个结合特定问题归纳偏置的全新神经网络架构、一个生成有用合成数据的程序以及一种利用问题对称性的方法。

接着,DeepMind 训练了一个利用强化学习的智能体 AlphaTensor 来玩这个游戏,该智能体在开始时没有任何现有矩阵乘法算法的知识。通过学习,AlphaTensor 随时间逐渐地改进,重新发现了历史上的快速矩阵算法(如 Strassen 算法),并且发现算法的速度比以往已知的要快。

08b454a3c2648224fa05819336105099.jpeg

AlphaTensor 玩的单人游戏,目标是找到正确的矩阵乘法算法。游戏状态是一个由数字组成的立方数组(灰色表示 0,蓝色表示 1,绿色表示 - 1),它代表了要完成的剩余工作。

举例而言,如果学校里教的传统算法可以使用 100 次乘法完成 4x5 与 5x5 矩阵相乘,通过人类的聪明才智可以将这一数字降至 80 次。与之相比,AlphaTensor 发现的算法只需使用 76 次乘法即可完成相同的运算,如下图所示。

ba9d5880e12cc9f79f8b94a43dc934d8.jpeg

除了上述例子之外,AlphaTensor 发现的算法还首次在一个有限域中改进了 Strassen 的二阶算法。这些用于小矩阵相乘的算法可以当做原语来乘以任意大小的更大矩阵。

AlphaTensor 还发现了具有 SOTA 复杂性的多样化算法集,其中每种大小的矩阵乘法算法多达数千,表明矩阵乘法算法的空间比以前想象的要丰富。

在这个丰富空间中的算法具有不同的数学和实用属性。利用这种多样性,DeepMind 对 AlphaTensor 进行了调整,以专门发现在给定硬件(如 Nvidia V100 GPU、Google TPU v2)上运行速度快的算法。这些算法在相同硬件上进行大矩阵相乘的速度比常用算法快了 10-20%,表明了 AlphaTensor 在优化任意目标方面具备了灵活性。

52aafd90227fddf673cd55234ab8b9dd.jpeg

AlphaTensor 具有一个对应于算法运行时的目标。当发现正确的矩阵乘法算法时,它会在指定硬件上进行基准测试,然后反馈给 AlphaTensor,以便在指定硬件上学习更高效的算法。

对未来研究和应用的影响

从数学的角度来看,对于旨在确定解决计算问题的最快算法的复杂性理论而言,DeepMind 的结果可以指导它的进一步研究。通过较以往方法更高效地探索可能的算法空间,AlphaTensor 有助于加深我们对矩阵乘法算法丰富性的理解。

此外,由于矩阵乘法是计算机图形学、数字通信、神经网络训练和科学计算等很多计算任务的核心组成部分,AlphaTensor 发现的算法可以显著提升这些领域的计算效率。

虽然本文只专注于矩阵乘法这一特定问题,但 DeepMind 希望能够启发更多的人使用 AI 来指导其他基础计算任务的算法发现。并且,DeepMind 的研究还表明,AlphaZero 这种强大的算法远远超出了传统游戏的领域,可以帮助解决数学领域的开放问题。

未来,DeepMind 希望基于他们的研究,更多地将人工智能用来帮助社会解决数学和科学领域的一些最重要的挑战。

原文链接:https://www.deepmind.com/blog/discovering-novel-algorithms-with-alphatensor

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

99c1c125349057c013b73c1f67f6bac6.jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/481557.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

论文学习18-Relation extraction and the influence of automatic named-entity recognition(联合实体关系抽取模型,2007)

文章目录abstract1.introduction3.问题形式化4.系统架构5. 命名实体识别6.关系抽取(核方法)6.1global context kernel6.2 local context kernel6.3 shallow linguistic kernel7实验Giuliano, C., et al. “Relation extraction and the influence of aut…

Nature:进化新方式?线粒体DNA会插入我们的基因组

来源:生物通科学家们惊讶地发现,每4000个新生儿中就有一个会将线粒体中的一些遗传密码插入到我们的DNA中,这为人类的进化方式提供了新见解。剑桥大学和伦敦玛丽女王大学的研究人员表明,线粒体DNA也会出现在一些癌症DNA中&#xff…

论文学习19-Structured prediction models for RNN based sequence labeling in clinical text(LSTM_CRF,2016)

文章目录abstract1. Introduction2.相关工作3.方法3.1 Bi-LSTM (baseline)3.2BiLSTMCRF3.3 BiLSTM_CRF with pairwise modeling3.4 Approximate Skip-chain CRF5.实验Jagannatha, A. and H. Yu “Structured prediction models for RNN based sequence labeling in clinical te…

「深度学习表情动作单元识别」 最新2022研究综述

来源:专知基于深度学习的表情动作单元识别是计算机视觉与情感计算领域的热点课题.每个动作单元描述了一种人脸局部表情动作,其组合可定量地表示任意表情.当前动作单元识别主要面临标签稀缺、特征难捕捉和标签不均衡3个挑战因素. 基于此,本文将…

为什么物理诺奖颁给量子信息科学?——量子信息的过去、现在和未来

导语10月4日,2022年诺贝尔物理学奖授予 Alain Aspect, John F. Clauser 和 Anton Zeilinger,表彰他们“用纠缠光子实验,验证了量子力学违反贝尔不等式,开创了量子信息科学”。他们的研究为基于量子信息的新技术奠定了基础&#xf…

论文学习20-End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF(序列标注,2016ACL

文章目录abstract1.introduction2.Architecture2.1 CNN for Character-level Representation2.2 BiLSTM2.2.1 LSTM单元2.2.2BiLSTM2.3CRF2.4BiLSTM-CNNs-CRF3.训练Ma, X. and E. Hovy “End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF.”abstract 最先进的序列…

可溶解光开关利用光控制神经元

ISTOCK来源:IEEE电气电子工程师大约20年前,出现了一种称为光遗传学的策略,用激光控制大脑活动。它利用病毒将基因插入细胞,使其对光敏感。光遗传学给研究人员提供了一种精确的方法来刺激或抑制大脑回路,并阐明它们在大…

生成式AI无敌了: 大神微调Stable Diffusion,打造神奇宝贝新世界

来源:大数据文摘授权转载自AI科技评论作者:李梅、施方圆编辑:陈彩娴作为一个强大、公开且足够简单的模型,最近大火的 Stable Diffusion 在文本生成图像之外,给了大家无限的创作可能性。最近,来自 Lambda La…

论文学习21-Globally Normalized Transition-Based Neural Networks(2016,标签偏差问题

文章目录abstract1.introduction2.Model2.1 Transition System2.2 全局和局部归一化3.训练3.2标签偏差问题abstract 介绍了一种基于全局规范化转换的神经网络模型,该模型实现了最先进的词性标注、依存分析和句子压缩结果。我们的模型是一个简单的前馈神经网络&#…

推翻单一干细胞理论:哺乳动物大脑中发现了第二种干细胞

来源:生物通在成年哺乳动物的大脑中,神经干细胞保证了新的神经细胞,即神经元的不断形成。这个过程被称为成年神经发生,帮助鼠维持它们的嗅觉。一个研究小组最近在鼠大脑中发现了第二种干细胞群,它主要参与成年鼠嗅球中…

论文阅读课1-Attention Guided Graph Convolutional Networks for Relation Extraction(关系抽取,图卷积,ACL2019,n元)

文章目录abstract1.introduction1.1 dense connectionGCN1.2 效果突出1.3 contribution2.Attention Guided GCNs2.1 GCNs2.2 Attention Guided Layer2.3 Densely Connected Layer2.4 线性层2.5 AGGCN for RE3.实验3.1 数据集3.2 设置3.3 n-ary3.4 句子级4.ablation Study4.相关…

Nat. Rev. Genet. | 通过可解释人工智能从深度学习中获得遗传学见解

编译 | 沈祥振审稿 | 夏忻焱今天为大家介绍的是来自Maxwell W. Libbrecht,Wyeth W. Wasserman和Sara Mostafavi的一篇关于人工智能对于基因组学的可解释性的研究的综述。基于深度学习的人工智能(AI)模型现在代表了基因组学研究中进行功能预测…

复杂系统的逆向工程——通过时间序列重构复杂网络和动力学

导语蛋白质相互作用网络、生态群落、全球气候系统……很多复杂系统都可以抽象为一个相互作用的网络和其上的动力学。传统的研究主要关注在如何构建网络动力学模型,从而产生和实验观测数据具有相似统计特征的结果。所谓的复杂系统逆向工程,就是反其道而行…

关系提取论文总结

文章目录1.模型总结1.1 基于序列的方法1.2 dependency-based(基于依赖的)(有图)1.2.2 句间关系抽取1.5 自动学习特征的方法1.4 联合抽取模型1.6 RNN/CNN/GCN用于关系提取1.7 远程监督1.8句子级关系提取1.9MCR(阅读理解&#xff09…

邬贺铨:“物超人”具有里程碑意义,五方面仍需发力

来源:人民邮电报作者:邬贺铨我国正式迈入“物超人”时代。据工业和信息化部最新数据显示,截至8月末,我国三家基础电信企业发展移动物联网终端用户16.98亿户,成为全球主要经济体中率先实现“物超人”的国家。“物超人”…

深度:计算机的本质到底是什么?

来源:图灵人工智能来源:www.cnblogs.com/jackyfei/p/13862607.html作者:张飞洪 01 抽象模型庄子说过吾生有崖,知无涯。以有限的生命去学习无尽的知识是很愚蠢的。所以,学习的终极目标一定不是知识本身,因为…

中科大郭光灿院士团队发PRL,量子力学基础研究取得重要进展

来源:FUTURE | 远见选编:FUTURE | 远见 闵青云 中国科学技术大学郭光灿院士团队在量子力学基础研究方面取得重要进展。该团队李传锋、黄运锋等人与西班牙理论物理学家合作,实验验证了基于局域操作和共享随机性(LOSR, Local operat…

论文阅读课2-Inter-sentence Relation Extraction with Document-level (GCNN,句间关系抽取,ACL2019

文章目录abstract1.introduction2.model2.1输入层2.2构造图2.3 GCNN层2.4MIL-based Relation Classification3.实验设置3.1 数据集3.2 数据预处理3.3 基线模型3.4 训练3.5结果4.相关工作4.1 句子间关系抽取4.2 GCNN5. 结论相关博客Sahu, S. K., et al. (2019). Inter-sentence …

量子并不总意味着小尺度,量子物理学家用它探索系外行星生命

来源:机器之心除了量子计算,量子物理学的应用范畴还很广。近日,美国东北大学物理学教授 Gregory Fiete 探讨了量子研究的广泛应用。量子物理学家研究的世界与普通人每天生活的世界是同一个,唯一的区别是它被科学家「缩放」到了无法…

论文阅读课3-GraphRel: Modeling Text as Relational Graphs for(实体关系联合抽取,重叠关系,关系之间的关系,自动提取特征)

文章目录abstract1.Introduction2.相关工作3.回顾GCN4.方法4.1第一阶段4.1.1 Bi-LSTM4.1.2 Bi_GCN4.1.3 实体关系抽取4.2 第二阶段4.2.1 构建关系权图4.3训练4.4 inference5.实验5.1 settings5.1.1数据集5.2 baseline and evaluation metrics5.3 Quantitative Results5.4 细节分…