推翻单一干细胞理论:哺乳动物大脑中发现了第二种干细胞

7e4a3974f8b9d65681ee077d60ff46a9.jpeg

来源:生物通

在成年哺乳动物的大脑中,神经干细胞保证了新的神经细胞,即神经元的不断形成。这个过程被称为成年神经发生,帮助鼠维持它们的嗅觉。一个研究小组最近在鼠大脑中发现了第二种干细胞群,它主要参与成年鼠嗅球中新神经元的产生。

14979a27f5f950ab721c3b1e32daced8.jpeg

小鼠大脑侧脑室(底部)内的脑组织的共聚焦图像。该图像显示顶端和基底的神经干细胞在细胞核内显示H2B-GFP(绿色)标记。所有的细胞核都被染成蓝色。

在成年哺乳动物的大脑中,神经干细胞保证了新的神经细胞,即神经元的不断形成。这个过程被称为成年神经发生,帮助小鼠维持它们的嗅觉。海德堡大学跨学科神经科学中心(IZN)的Francesca Ciccolini博士领导的研究小组最近在小鼠大脑中发现了第二个干细胞群。这种新型干细胞,而不是之前已知的那种,主要参与了成年小鼠嗅球中新神经元的产生。

到目前为止,关于神经发生的科学研究都集中在所谓的顶点干细胞(apical stem cells)上。Ciccolini博士解释说:“长期以来,它们被认为是成年小鼠大脑中唯一的干细胞群,也是神经细胞形成的主要驱动力。”这些神经干细胞位于侧脑室附近的脑室下区。它们曾经被认为形成了前体细胞,然后在小鼠的嗅球中分化为中间神经元,即调节刺激在相互连接的神经元之间传递的神经细胞。海德堡大学的研究人员推翻了单一干细胞类型理论和顶点干细胞负责神经发生的假设。

最初,神经生物系的研究人员正在研究小鼠大脑中所谓的孤独干细胞群在不同情况下的表现。他们使用了转基因动物,这些动物的神经干细胞被细胞核中活跃的染料染成绿色。神经生物学家惊讶地发现,大多数绿色细胞没有显示出已知的顶点干细胞的特征。“起初,我们认为它们可能是星形胶质细胞,帮助细胞确保神经元能够完成它们的工作。但在我们进行了一些功能分析后,很快就清楚了,这肯定是一个独立的干细胞群,”Ciccolini博士强调说。

进一步的研究表明,新发现的干细胞类型在形态学和功能上都与已知种群不同。这种细胞与侧脑室没有接触,因此被称为基底细胞。研究人员确定,基底干细胞——而不是顶点干细胞——负责嗅球神经元的形成。为了证明这一点,他们分别标记了两种细胞群,然后观察标记的神经元是否出现在嗅球中。Francesca Ciccolini解释道:“这只会发生在基础人群被标记的时候。”当只标记顶点干细胞时,嗅球中无法检测到新的标记神经元。

海德堡大学的科学家还发现,小鼠大脑中的干细胞类型和前体细胞通过所谓的notch相互作用相互交流。一个同名的受体起着至关重要的作用,它控制着细胞增殖的速度,并监控着细胞分化的过程。Francesca Ciccolini工作小组的博士研究员Katja Baur解释说:“缺口的活动决定了干细胞是否仍然是干细胞还是发育成神经细胞。”她补充说:“我们怀疑,顶点干细胞干预了notch信号通路的激活,可以抑制增殖和神经发生。”除此之外,它还能防止干细胞库的耗尽。

Ciccolini博士强调说:“我们发现在成年动物的小鼠大脑中存在另一种干细胞类型,这为神经元形成的过程提供了新的线索。”人类的大脑也有类似的干细胞,它们参与了脑肿瘤的形成。海德堡大学的研究人员希望他们的工作也将为这类肿瘤的发展和可能的治疗提供新的线索。

参考文献

A novel stem cell type at the basal side of the subventricular zone maintains adult neurogenesis

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

99ad94787aa4daa5bb61a9978a2c74f6.jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/481545.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

论文阅读课1-Attention Guided Graph Convolutional Networks for Relation Extraction(关系抽取,图卷积,ACL2019,n元)

文章目录abstract1.introduction1.1 dense connectionGCN1.2 效果突出1.3 contribution2.Attention Guided GCNs2.1 GCNs2.2 Attention Guided Layer2.3 Densely Connected Layer2.4 线性层2.5 AGGCN for RE3.实验3.1 数据集3.2 设置3.3 n-ary3.4 句子级4.ablation Study4.相关…

Nat. Rev. Genet. | 通过可解释人工智能从深度学习中获得遗传学见解

编译 | 沈祥振审稿 | 夏忻焱今天为大家介绍的是来自Maxwell W. Libbrecht,Wyeth W. Wasserman和Sara Mostafavi的一篇关于人工智能对于基因组学的可解释性的研究的综述。基于深度学习的人工智能(AI)模型现在代表了基因组学研究中进行功能预测…

复杂系统的逆向工程——通过时间序列重构复杂网络和动力学

导语蛋白质相互作用网络、生态群落、全球气候系统……很多复杂系统都可以抽象为一个相互作用的网络和其上的动力学。传统的研究主要关注在如何构建网络动力学模型,从而产生和实验观测数据具有相似统计特征的结果。所谓的复杂系统逆向工程,就是反其道而行…

关系提取论文总结

文章目录1.模型总结1.1 基于序列的方法1.2 dependency-based(基于依赖的)(有图)1.2.2 句间关系抽取1.5 自动学习特征的方法1.4 联合抽取模型1.6 RNN/CNN/GCN用于关系提取1.7 远程监督1.8句子级关系提取1.9MCR(阅读理解&#xff09…

邬贺铨:“物超人”具有里程碑意义,五方面仍需发力

来源:人民邮电报作者:邬贺铨我国正式迈入“物超人”时代。据工业和信息化部最新数据显示,截至8月末,我国三家基础电信企业发展移动物联网终端用户16.98亿户,成为全球主要经济体中率先实现“物超人”的国家。“物超人”…

深度:计算机的本质到底是什么?

来源:图灵人工智能来源:www.cnblogs.com/jackyfei/p/13862607.html作者:张飞洪 01 抽象模型庄子说过吾生有崖,知无涯。以有限的生命去学习无尽的知识是很愚蠢的。所以,学习的终极目标一定不是知识本身,因为…

中科大郭光灿院士团队发PRL,量子力学基础研究取得重要进展

来源:FUTURE | 远见选编:FUTURE | 远见 闵青云 中国科学技术大学郭光灿院士团队在量子力学基础研究方面取得重要进展。该团队李传锋、黄运锋等人与西班牙理论物理学家合作,实验验证了基于局域操作和共享随机性(LOSR, Local operat…

论文阅读课2-Inter-sentence Relation Extraction with Document-level (GCNN,句间关系抽取,ACL2019

文章目录abstract1.introduction2.model2.1输入层2.2构造图2.3 GCNN层2.4MIL-based Relation Classification3.实验设置3.1 数据集3.2 数据预处理3.3 基线模型3.4 训练3.5结果4.相关工作4.1 句子间关系抽取4.2 GCNN5. 结论相关博客Sahu, S. K., et al. (2019). Inter-sentence …

量子并不总意味着小尺度,量子物理学家用它探索系外行星生命

来源:机器之心除了量子计算,量子物理学的应用范畴还很广。近日,美国东北大学物理学教授 Gregory Fiete 探讨了量子研究的广泛应用。量子物理学家研究的世界与普通人每天生活的世界是同一个,唯一的区别是它被科学家「缩放」到了无法…

论文阅读课3-GraphRel: Modeling Text as Relational Graphs for(实体关系联合抽取,重叠关系,关系之间的关系,自动提取特征)

文章目录abstract1.Introduction2.相关工作3.回顾GCN4.方法4.1第一阶段4.1.1 Bi-LSTM4.1.2 Bi_GCN4.1.3 实体关系抽取4.2 第二阶段4.2.1 构建关系权图4.3训练4.4 inference5.实验5.1 settings5.1.1数据集5.2 baseline and evaluation metrics5.3 Quantitative Results5.4 细节分…

大脑是如何编码外界各种信息的?

来源:知乎链接:https://www.zhihu.com/question/532956044/answer/2494267009大脑将外部信息编码成心智模型。编码方式分为三种神经链接、语言逻辑和数学。心智模型理论是成型于上世纪九十年代的认知科学理论,代表人物就是著名学者史蒂芬平克…

论文阅读课4-Long-tail Relation Extraction via Knowledge Graph Embeddings(GCN,关系抽取,2019,远程监督,少样本不平衡,2注意

文章目录abstract1.introduction2.相关工作2.1 关系提取2.2 KG embedding2.3 GCNN3. 方法3.1符号3.2框架3.2.1 Instance Encoder3.4 Relational Knowledge Learning through KG Embeddings and GCNs.3.5 knowledge-aware attention4.实验4.1 数据集4.3 result4.4 长尾关系的处理…

用机器学习建立的数字「鼻子」表明,我们的嗅觉既反映了芳香分子的结构,也反映了产生它们的代谢过程...

来源:ScienceAI编辑:萝卜皮Alex Wiltschko 十几岁时就开始收集香水。他的第一瓶是 Azzaro Pour Homme,这是他在 T.J. Maxx百货的货架上发现的一款永恒的古龙水。他从《Perfumes: The Guide》中认出了这个名字,这本书对香气的诗意描…

论文阅读课5-DocRED: A Large-Scale Document-Level Relation Extraction Dataset(大规模文档集关系提取数据集

文章目录abstract1.Introduction2.数据收集3.数据分析4.基线设置5.实验Yao, Y., et al. (2019). DocRED A Large-Scale Document-Level Relation Extraction Dataset. Proceedings of the 57th Annual Meeting ofthe Association for Computational Linguistics.基线docRED数据…

74位图灵奖得主背景显示:大多数没有主修计算机专业,也并非高引用计算机科学家...

来源:中小学信息学竞赛计算机科学是世界上发展最快的学科之一,计算机科学的发展直接影响着人们的生活,并有可能从根本上改变传统的生活方式。图灵奖作为计算机领域的最高奖项,一直被誉为“计算机界的诺贝尔奖”,截止20…

Meta最新款VR头显体验者亲述:Quest Pro更漂亮、更有趣,但戴久了,脑袋疼!

来源:AI前线作者:Rachel Metz编译:核子可乐、冬梅价值一万多块的 VR 头显设备,你会买吗?声明:本文为 InfoQ 翻译,未经许可禁止转载。当地时间 10 月 11 日,元宇宙公司 Meta 召开了一…

文献阅读6-Entity-Relation Extraction as Multi-turn Question Answering(实体关系联合抽取,层次标签依赖关系,multi-turn QA)

文章目录abstract1.Introduction3.相关工作2.2MRC(机器阅读理解)2.3 非QA->QA3.数据集和任务3.1别人的数据集3.2我们建立的数据集RESUME4.Model4.1概述4.2生成问题4.3通过MRC来获取答案范围4.4 强化学习5.实验5.1RESUME结果5.2 其他结果6 Ablation Studies6.2问题…

论文阅读课7-使用句子级注意力机制结合实体描述的远程监督关系抽取(APCNN+D)2017

文章目录abstract1. Introduction2.方法3.训练4.实验4.1数据集4.2 评价指标4.3实验结果和分析4.3.1参数设置4.3.2 baseline4.3.3 conclusion5.相关工作5.1监督学习5.2远程监督学习Ji, G., et al. (2017). Distant Supervision for Relation Extraction with Sentence-Level Att…

Cell经典回顾:机器学习模型揭示大脑怎样整合空间记忆与关系记忆

导语人类等高等动物能够做出复杂推理、整合新知识以控制行为,其神经机制离不开海马-内嗅系统对于空间记忆和关系记忆的调控。来自牛津大学的学者于2020年在Cell杂志发表文章,通过分解和重组的方法构建了一套框架(TEM模型)&#xf…

论文阅读课8-Chinese Relation Extraction with Multi-Grained Information and External Linguistic Knowledge

文章目录Abstract1.Introduction2.相关工作3. 方法3.1 输入3.1.1 字符级别表示3.1.2单词级表示3.2encoder3.2.1 base lattice LSTM encoder3.2.2 MG lattice LSTM encoder3.3 关系分类器4.实验4.1数据集4.1.2 评估4.1.2 超参数设置4.2lattice的作用4.3词义表示的影响4.4最终结果…