中科大郭光灿院士团队发PRL,量子力学基础研究取得重要进展

56f30c57eaba605e3615900be6898427.png

来源:FUTURE | 远见

选编:FUTURE | 远见 闵青云 

中国科学技术大学郭光灿院士团队在量子力学基础研究方面取得重要进展。该团队李传锋、黄运锋等人与西班牙理论物理学家合作,实验验证了基于局域操作和共享随机性(LOSR, Local operation and shared randomness)理论框架下的真多体非局域性,结果表明用两体或三体非局域关联无法解释自然界产生的所有关联。该成果10月4日发表在国际知名期刊《物理评论快报》上,并被选为该期的封面文章

a864359b9f9bab20225f42e0e08f2e54.jpeg

图1:本期PRL封面

6702a07ac71251de4d8f0bf117c1d34c.jpeg

量子力学允许粒子之间存在非局域的关联,即量子非局域性。量子非局域性是实现各种量子信息过程的重要资源。对于多体系统,真多体非局域性被认为是多体系统中能展现的最强的非局域关联。真多体非局域性检验通常依赖于局域操作和经典通信(LOCC, Local operation and classical communication)框架下的不等式的违背。然而在多体非局域性的检验中,我们通常需要假定不同观测者间联合测量的概率分布服从无信号条件(non-signaling condition),经典通信是禁止的,因此基于LOCC的真多体非局域性并不是良好的定义。

9951b05cbe37af2055bb3975e0c3afb8.jpeg

图2:(a)LOSR局域模型;(b)白噪声鲁棒的新LOSR不等式。

在量子资源理论中,LOCC并不是唯一可以用来定义纠缠资源的免费操作,在去除经典通信后,一个更为自然的定义是基于LOSR的理论框架。在实验中,研究组先验证了三体纠缠结构的非局域性。该三体系统的LOSR局域模型允许三体之间具有共享随机性,并允许对任意两体之间的关联不设限,即允许其关联可以是量子关联,也可以具有更为广泛的不依赖量子力学描述的广义概率理论(Generalized probabilistic theory)所允许的关联。研究组联合Marc-Olivier Renou等人对此前相关理论工作中提出的LOSR非局域性不等式进行改进,针对多光子实验中常见的白噪声提出了鲁棒性更强的不等式,并在实验中利用自主研制的“三明治型”高保真度多光子纠缠源[PRL115, 260402 (2015)]以26.3个标准差的违背验证了真三体LOSR非局域性。研究组进一步在四体情形实验违背了真四体LOSR不等式,实验排除了基于共享随机性和三体广义关联的局域性模型,展示了真四体非局域性。这些实验结果表明仅两体或三体非局域关联无法解释自然界产生的所有关联。该工作中提出的不等式可以拓展到任意N体情形,而制备高保真度纠缠源的方法为实验展示更大量子系统非局域性打下基础。

文章共同第一作者为中科院量子信息重点实验室博士研究生曹洹,副研究员张超以及西班牙光子科学研究所的Marc-OlivierRenou。该工作得到了国家自然科学基金委、中科院和安徽省的资助。

(中科院量子信息重点实验室、中科院量子信息和量子科技创新研究院、物理学院、科研部)

论文链接:

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.129.150402

--中国科学技术大学

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

ed11b361a19b16348d8af0126c4a8892.jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/481538.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

论文阅读课2-Inter-sentence Relation Extraction with Document-level (GCNN,句间关系抽取,ACL2019

文章目录abstract1.introduction2.model2.1输入层2.2构造图2.3 GCNN层2.4MIL-based Relation Classification3.实验设置3.1 数据集3.2 数据预处理3.3 基线模型3.4 训练3.5结果4.相关工作4.1 句子间关系抽取4.2 GCNN5. 结论相关博客Sahu, S. K., et al. (2019). Inter-sentence …

量子并不总意味着小尺度,量子物理学家用它探索系外行星生命

来源:机器之心除了量子计算,量子物理学的应用范畴还很广。近日,美国东北大学物理学教授 Gregory Fiete 探讨了量子研究的广泛应用。量子物理学家研究的世界与普通人每天生活的世界是同一个,唯一的区别是它被科学家「缩放」到了无法…

论文阅读课3-GraphRel: Modeling Text as Relational Graphs for(实体关系联合抽取,重叠关系,关系之间的关系,自动提取特征)

文章目录abstract1.Introduction2.相关工作3.回顾GCN4.方法4.1第一阶段4.1.1 Bi-LSTM4.1.2 Bi_GCN4.1.3 实体关系抽取4.2 第二阶段4.2.1 构建关系权图4.3训练4.4 inference5.实验5.1 settings5.1.1数据集5.2 baseline and evaluation metrics5.3 Quantitative Results5.4 细节分…

大脑是如何编码外界各种信息的?

来源:知乎链接:https://www.zhihu.com/question/532956044/answer/2494267009大脑将外部信息编码成心智模型。编码方式分为三种神经链接、语言逻辑和数学。心智模型理论是成型于上世纪九十年代的认知科学理论,代表人物就是著名学者史蒂芬平克…

论文阅读课4-Long-tail Relation Extraction via Knowledge Graph Embeddings(GCN,关系抽取,2019,远程监督,少样本不平衡,2注意

文章目录abstract1.introduction2.相关工作2.1 关系提取2.2 KG embedding2.3 GCNN3. 方法3.1符号3.2框架3.2.1 Instance Encoder3.4 Relational Knowledge Learning through KG Embeddings and GCNs.3.5 knowledge-aware attention4.实验4.1 数据集4.3 result4.4 长尾关系的处理…

用机器学习建立的数字「鼻子」表明,我们的嗅觉既反映了芳香分子的结构,也反映了产生它们的代谢过程...

来源:ScienceAI编辑:萝卜皮Alex Wiltschko 十几岁时就开始收集香水。他的第一瓶是 Azzaro Pour Homme,这是他在 T.J. Maxx百货的货架上发现的一款永恒的古龙水。他从《Perfumes: The Guide》中认出了这个名字,这本书对香气的诗意描…

论文阅读课5-DocRED: A Large-Scale Document-Level Relation Extraction Dataset(大规模文档集关系提取数据集

文章目录abstract1.Introduction2.数据收集3.数据分析4.基线设置5.实验Yao, Y., et al. (2019). DocRED A Large-Scale Document-Level Relation Extraction Dataset. Proceedings of the 57th Annual Meeting ofthe Association for Computational Linguistics.基线docRED数据…

74位图灵奖得主背景显示:大多数没有主修计算机专业,也并非高引用计算机科学家...

来源:中小学信息学竞赛计算机科学是世界上发展最快的学科之一,计算机科学的发展直接影响着人们的生活,并有可能从根本上改变传统的生活方式。图灵奖作为计算机领域的最高奖项,一直被誉为“计算机界的诺贝尔奖”,截止20…

Meta最新款VR头显体验者亲述:Quest Pro更漂亮、更有趣,但戴久了,脑袋疼!

来源:AI前线作者:Rachel Metz编译:核子可乐、冬梅价值一万多块的 VR 头显设备,你会买吗?声明:本文为 InfoQ 翻译,未经许可禁止转载。当地时间 10 月 11 日,元宇宙公司 Meta 召开了一…

文献阅读6-Entity-Relation Extraction as Multi-turn Question Answering(实体关系联合抽取,层次标签依赖关系,multi-turn QA)

文章目录abstract1.Introduction3.相关工作2.2MRC(机器阅读理解)2.3 非QA->QA3.数据集和任务3.1别人的数据集3.2我们建立的数据集RESUME4.Model4.1概述4.2生成问题4.3通过MRC来获取答案范围4.4 强化学习5.实验5.1RESUME结果5.2 其他结果6 Ablation Studies6.2问题…

论文阅读课7-使用句子级注意力机制结合实体描述的远程监督关系抽取(APCNN+D)2017

文章目录abstract1. Introduction2.方法3.训练4.实验4.1数据集4.2 评价指标4.3实验结果和分析4.3.1参数设置4.3.2 baseline4.3.3 conclusion5.相关工作5.1监督学习5.2远程监督学习Ji, G., et al. (2017). Distant Supervision for Relation Extraction with Sentence-Level Att…

Cell经典回顾:机器学习模型揭示大脑怎样整合空间记忆与关系记忆

导语人类等高等动物能够做出复杂推理、整合新知识以控制行为,其神经机制离不开海马-内嗅系统对于空间记忆和关系记忆的调控。来自牛津大学的学者于2020年在Cell杂志发表文章,通过分解和重组的方法构建了一套框架(TEM模型)&#xf…

论文阅读课8-Chinese Relation Extraction with Multi-Grained Information and External Linguistic Knowledge

文章目录Abstract1.Introduction2.相关工作3. 方法3.1 输入3.1.1 字符级别表示3.1.2单词级表示3.2encoder3.2.1 base lattice LSTM encoder3.2.2 MG lattice LSTM encoder3.3 关系分类器4.实验4.1数据集4.1.2 评估4.1.2 超参数设置4.2lattice的作用4.3词义表示的影响4.4最终结果…

黑客帝国「缸中之脑」真的可以,这100万个「活体人脑细胞」5分钟学会打游戏...

来源:FUTURE | 远见 闵青云 选编既然生物神经元如此高效,为什么不拿来用呢?最新版本的《黑客帝国》还有两天才会上映,但最近的一些科技进展总让我们觉得,导演描述的世界似乎离我们越来越近了。其中一个进展来自前段时间…

Nature发布迄今为止规模最大的全基因组关联研究,揭示了基因与身高的关系

来源:生物通一个国际研究团队已经确定了超过12000个影响一个人身高的基因变异。这项发表在10月12日《自然》杂志上的研究是迄今为止最大规模的全基因组关联研究,使用了来自281项贡献研究的500多万人的DNA。它填补了我们在理解基因差异如何导致身高差异方…

论文阅读9-Fine-tuning Pre-Trained Transformer Language Models to(远程监督关系抽取,ACL2019,GPT,长尾关系,DISTRE)

文章目录abstrac1.Introduction2 Transformer Language Model2.1 Transformer-Decoder2.2 Unsupervised Pre-training of Language Representations3 Multi-Instance Learning with the Transformer3.1 Distantly Supervised Fine-tuning on Relation Extraction3.2input repre…

Meta半年亏损57.7亿美元也要搞元宇宙,听听扎克伯格自己是怎么说的

来源:科技智谷编辑:Light"这可能是世界上最烧钱的梦。元宇宙就是未来,VR就是下一代PC。2022年10月12日,全球VR巨头Meta召开一年一度的Meta Connect大会2022。本次大会, Meta发布了旗下最新的虚拟现实头显——Ques…

文献阅读课10-Neural Relation Extraction for Knowledge Base Enrichment(提取+嵌入+消歧+规范化联合模型,实体已知,仅关系抽取,多词实体)

文章目录Abstract1.Introduction2. 相关工作2.2 Entity-aware Relation Extraction3.提出的模型3.1 Solution Framework3.1 data collection module3.3 Joint Learning of Word and Entity Embeddings3.4 N-gram Based Attention Model训练3.5 Triple Generation4.实验4.1 超参…

张益唐被曝已证明黎曼猜想相关问题,震动数学界

来源:金磊 Alex 发自 凹非寺量子位 | 公众号 QbitAIBreaking News!网传数学家张益唐,已经攻克了朗道-西格尔零点猜想(Landau-Siegel Zeros Conjecture)。而这则消息,据说是张益唐在参加北京大学校友Zoom线上…

论文阅读课11-TEMPROB:Improving Temporal Relation Extraction with a Globally Acquired Statistical Resource

文章目录abstract1.Introduction2.相关工作3 TEMPROB: A Probabilistic Resource for TempRels3.1 事件抽取3.2TempRel提取3.2.1 features3.2.2 learning3.3 Interence3.4 corpus3.5有趣的统计3.6 极端情况3.7 下列事件的分布4.实验4.1 Quality Analysis of TEMPROB4.2 Improvi…