生成式AI无敌了: 大神微调Stable Diffusion,打造神奇宝贝新世界

3e29ba860d0c0beb7aea2f97fc5b2f65.jpeg

来源:大数据文摘授权转载自AI科技评论

作者:李梅、施方圆

编辑:陈彩娴

作为一个强大、公开且足够简单的模型,最近大火的 Stable Diffusion 在文本生成图像之外,给了大家无限的创作可能性。

最近,来自 Lambda Labs 的机器学习研究员 Justin Pinkney 对该模型进行了微调,构建了一个神奇宝贝生成器!

来看一些有趣的例子~

下图是输入名字后生成的一些神奇宝贝:戴珍珠耳环的少女、奥巴马、特朗普、鲍里斯·约翰逊、龙猫、Hello Kitty。

ac4eb9ed9afc29d4f1994a9afca60314.jpeg

Lady Gaga、鲍里斯·约翰逊、普京、默克尔、特朗普、柏拉图:

43b39aa2a26e8d9093bf3ee84bd6ebd4.jpeg

耶稣基督:

817c0c54e1a45c7c9c6e268f7457b631.jpeg

除了现有的角色和公共人物,你还可以输入一个描述来生成自己想象的神奇宝贝:骷髅祭司

b6ca7066fef8144b4c7c10281c8cd8fb.jpeg

你也可以输入自己的姓名或网名,生成属于自己的神奇宝贝形象。这可太酷了,推特上的网友纷纷用自己的名字展开创作,看看自己如果变成神奇宝贝会是什么样子。

6afecafb1118eaf69c5c0e017c1b650f.jpeg

图注:网友 Jo Barf Creepy 的神奇宝贝形象

9daca053ad70ed98921f54b2ad41a44f.jpeg

图注:网友 Elizabeth Holmes 的神奇宝贝形象

e67e52abfe6e4749f46e6b6a3a99f857.jpeg

图注:网友 Upbeatblue 的神奇宝贝形象

4db9ffb5a72f2c828e6ebf144347d60f.jpeg

图注:网友 Onion-sama 的神奇宝贝形象

输入一些漫画角色的名字也可以获得相匹配的神奇宝贝:

8871b439fbf14009be081cbf38adc353.jpeg

而那些陪伴人们童年的神奇宝贝在这个生成器中也有了新的样貌:皮卡丘、妙蛙种子、喷火龙、树才怪、路卡利欧、梦幻。

24bad510eb889c8ab844ca844ef0c7de.jpeg

神奇宝贝生成器是如何“生成”的

Pinkney在推特上展示了这个神奇宝贝生成器的训练过程。

68727398303ee4bf57c7f6b228e40122.jpeg

传送门:

https://github.com/LambdaLabsML/examples/tree/main/stable-diffusion-finetuning

他表示,Stable Diffusion 是一个很好的通用模型,但要获得特定风格的输出不是件容易的事,这通常需要做大量枯燥的工作,制作复杂的文本提示库,或者你也可以偷懒只对图像生成模型进行微调。

Pinkney 在神奇宝贝图像的数据集上对初始的 Stable Diffusion 进行了微调。

首先是构建一个数据集。数据集包含神奇宝贝图像和对应的文本描述,比如妙蛙种子被描述成“一个红眼睛的绿色神奇宝贝图像”,绿毛虫则被描述为“一个长着红鼻子的绿黄两色玩具”。

b366c0ee218397c9dbe98adb940d7bcf.jpeg

图注:神奇宝贝数据集

当然,这些描述不是人工完成的,而是使用了神经网络来代劳,即图像描述模型 BLIP。虽然这些描述还不是十分完美,但也足够用了。

然后,他在 A6000 上只花费了几个小时对 AI 模型进行训练,让模型学习以神奇宝贝的风格来生成图像,但将先前的知识保留一段时间,最终对数据集产生过拟合。

开始时,样本是正常图像的样子,然后逐渐获得神奇宝贝的风格,随着训练的继续,最终呈现一个与原始提示不同的神奇宝贝图像:

b7fbba49151988f888338eb10ecf5d3c.gif

这是一种很简单的微调,但它运行得非常好。有了这样一个微调后的模型,无论你给它什么提示,它都会生成神奇宝贝。所以不必再煞费苦心地想提示语了。

在创建神奇宝贝时,你可以选择输出多个:

18aaf571fdcb727a41359addc33a38d9.jpeg

图注:带翅膀的机械猫

Pinkney 表示,欢迎大家用更复杂的方式把这个模型专门地用在新领域。像这样的小工具就是 Stable Diffusion 这类 AI 模型开源好处的体现。

One more thing

这个模型在网上引起创作热潮后,Pinkney 又发布了一篇博客补充了一些额外的工作细节。

他发现,令人惊讶的是,这个模型竟然设法记住了初始 Stable Diffusion 的一些通用知识,而它只是在一个有限的数据集上训练了几千步。但是,对神奇宝贝进行微调时,模型实际上很快就会开始过度拟合,如果只是以一种简单的方式从中采样,模型就会为新的提示生成胡言乱语式的神奇宝贝,也就是说,它已经灾难性地遗忘了它所训练的原始数据)。但是 Stable Diffusion 在训练期间保持模型的指数移动平均 (EMA) 版本,通常用于推理。

因此,如果使用 EMA 权重,我们实际上是在使用原始模型和微调模型的平均值。事实证明,这对于生成神奇宝贝而言是必不可少的。此外,你还可以通过直接将新模型与初始模型的权重进行平均来微调效果,以控制生成神奇宝贝的数量。微调和对模型进行平均的操作可以将原始内容与微调后的风格有效混合。

bb50215351fe8db0eccce498951b7c32.jpeg

图注:左边是完全微调的模型,右边是只微调注意力层的模型。

另外,你也可以冻结模型的不同部分来进行微调,比如上图是两种微调方式的生成效果,可以看到,只微调了注意力层的模型可以生成更正常的 Yoda,但并不太擅长制作神奇宝贝。

参考链接:

https://www.justinpinkney.com/pokemon-generator/

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

d6fbb081c3ead93c4895d095b6feda19.jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/481547.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

论文学习21-Globally Normalized Transition-Based Neural Networks(2016,标签偏差问题

文章目录abstract1.introduction2.Model2.1 Transition System2.2 全局和局部归一化3.训练3.2标签偏差问题abstract 介绍了一种基于全局规范化转换的神经网络模型,该模型实现了最先进的词性标注、依存分析和句子压缩结果。我们的模型是一个简单的前馈神经网络&#…

推翻单一干细胞理论:哺乳动物大脑中发现了第二种干细胞

来源:生物通在成年哺乳动物的大脑中,神经干细胞保证了新的神经细胞,即神经元的不断形成。这个过程被称为成年神经发生,帮助鼠维持它们的嗅觉。一个研究小组最近在鼠大脑中发现了第二种干细胞群,它主要参与成年鼠嗅球中…

论文阅读课1-Attention Guided Graph Convolutional Networks for Relation Extraction(关系抽取,图卷积,ACL2019,n元)

文章目录abstract1.introduction1.1 dense connectionGCN1.2 效果突出1.3 contribution2.Attention Guided GCNs2.1 GCNs2.2 Attention Guided Layer2.3 Densely Connected Layer2.4 线性层2.5 AGGCN for RE3.实验3.1 数据集3.2 设置3.3 n-ary3.4 句子级4.ablation Study4.相关…

Nat. Rev. Genet. | 通过可解释人工智能从深度学习中获得遗传学见解

编译 | 沈祥振审稿 | 夏忻焱今天为大家介绍的是来自Maxwell W. Libbrecht,Wyeth W. Wasserman和Sara Mostafavi的一篇关于人工智能对于基因组学的可解释性的研究的综述。基于深度学习的人工智能(AI)模型现在代表了基因组学研究中进行功能预测…

复杂系统的逆向工程——通过时间序列重构复杂网络和动力学

导语蛋白质相互作用网络、生态群落、全球气候系统……很多复杂系统都可以抽象为一个相互作用的网络和其上的动力学。传统的研究主要关注在如何构建网络动力学模型,从而产生和实验观测数据具有相似统计特征的结果。所谓的复杂系统逆向工程,就是反其道而行…

关系提取论文总结

文章目录1.模型总结1.1 基于序列的方法1.2 dependency-based(基于依赖的)(有图)1.2.2 句间关系抽取1.5 自动学习特征的方法1.4 联合抽取模型1.6 RNN/CNN/GCN用于关系提取1.7 远程监督1.8句子级关系提取1.9MCR(阅读理解&#xff09…

邬贺铨:“物超人”具有里程碑意义,五方面仍需发力

来源:人民邮电报作者:邬贺铨我国正式迈入“物超人”时代。据工业和信息化部最新数据显示,截至8月末,我国三家基础电信企业发展移动物联网终端用户16.98亿户,成为全球主要经济体中率先实现“物超人”的国家。“物超人”…

深度:计算机的本质到底是什么?

来源:图灵人工智能来源:www.cnblogs.com/jackyfei/p/13862607.html作者:张飞洪 01 抽象模型庄子说过吾生有崖,知无涯。以有限的生命去学习无尽的知识是很愚蠢的。所以,学习的终极目标一定不是知识本身,因为…

中科大郭光灿院士团队发PRL,量子力学基础研究取得重要进展

来源:FUTURE | 远见选编:FUTURE | 远见 闵青云 中国科学技术大学郭光灿院士团队在量子力学基础研究方面取得重要进展。该团队李传锋、黄运锋等人与西班牙理论物理学家合作,实验验证了基于局域操作和共享随机性(LOSR, Local operat…

论文阅读课2-Inter-sentence Relation Extraction with Document-level (GCNN,句间关系抽取,ACL2019

文章目录abstract1.introduction2.model2.1输入层2.2构造图2.3 GCNN层2.4MIL-based Relation Classification3.实验设置3.1 数据集3.2 数据预处理3.3 基线模型3.4 训练3.5结果4.相关工作4.1 句子间关系抽取4.2 GCNN5. 结论相关博客Sahu, S. K., et al. (2019). Inter-sentence …

量子并不总意味着小尺度,量子物理学家用它探索系外行星生命

来源:机器之心除了量子计算,量子物理学的应用范畴还很广。近日,美国东北大学物理学教授 Gregory Fiete 探讨了量子研究的广泛应用。量子物理学家研究的世界与普通人每天生活的世界是同一个,唯一的区别是它被科学家「缩放」到了无法…

论文阅读课3-GraphRel: Modeling Text as Relational Graphs for(实体关系联合抽取,重叠关系,关系之间的关系,自动提取特征)

文章目录abstract1.Introduction2.相关工作3.回顾GCN4.方法4.1第一阶段4.1.1 Bi-LSTM4.1.2 Bi_GCN4.1.3 实体关系抽取4.2 第二阶段4.2.1 构建关系权图4.3训练4.4 inference5.实验5.1 settings5.1.1数据集5.2 baseline and evaluation metrics5.3 Quantitative Results5.4 细节分…

大脑是如何编码外界各种信息的?

来源:知乎链接:https://www.zhihu.com/question/532956044/answer/2494267009大脑将外部信息编码成心智模型。编码方式分为三种神经链接、语言逻辑和数学。心智模型理论是成型于上世纪九十年代的认知科学理论,代表人物就是著名学者史蒂芬平克…

论文阅读课4-Long-tail Relation Extraction via Knowledge Graph Embeddings(GCN,关系抽取,2019,远程监督,少样本不平衡,2注意

文章目录abstract1.introduction2.相关工作2.1 关系提取2.2 KG embedding2.3 GCNN3. 方法3.1符号3.2框架3.2.1 Instance Encoder3.4 Relational Knowledge Learning through KG Embeddings and GCNs.3.5 knowledge-aware attention4.实验4.1 数据集4.3 result4.4 长尾关系的处理…

用机器学习建立的数字「鼻子」表明,我们的嗅觉既反映了芳香分子的结构,也反映了产生它们的代谢过程...

来源:ScienceAI编辑:萝卜皮Alex Wiltschko 十几岁时就开始收集香水。他的第一瓶是 Azzaro Pour Homme,这是他在 T.J. Maxx百货的货架上发现的一款永恒的古龙水。他从《Perfumes: The Guide》中认出了这个名字,这本书对香气的诗意描…

论文阅读课5-DocRED: A Large-Scale Document-Level Relation Extraction Dataset(大规模文档集关系提取数据集

文章目录abstract1.Introduction2.数据收集3.数据分析4.基线设置5.实验Yao, Y., et al. (2019). DocRED A Large-Scale Document-Level Relation Extraction Dataset. Proceedings of the 57th Annual Meeting ofthe Association for Computational Linguistics.基线docRED数据…

74位图灵奖得主背景显示:大多数没有主修计算机专业,也并非高引用计算机科学家...

来源:中小学信息学竞赛计算机科学是世界上发展最快的学科之一,计算机科学的发展直接影响着人们的生活,并有可能从根本上改变传统的生活方式。图灵奖作为计算机领域的最高奖项,一直被誉为“计算机界的诺贝尔奖”,截止20…

Meta最新款VR头显体验者亲述:Quest Pro更漂亮、更有趣,但戴久了,脑袋疼!

来源:AI前线作者:Rachel Metz编译:核子可乐、冬梅价值一万多块的 VR 头显设备,你会买吗?声明:本文为 InfoQ 翻译,未经许可禁止转载。当地时间 10 月 11 日,元宇宙公司 Meta 召开了一…

文献阅读6-Entity-Relation Extraction as Multi-turn Question Answering(实体关系联合抽取,层次标签依赖关系,multi-turn QA)

文章目录abstract1.Introduction3.相关工作2.2MRC(机器阅读理解)2.3 非QA->QA3.数据集和任务3.1别人的数据集3.2我们建立的数据集RESUME4.Model4.1概述4.2生成问题4.3通过MRC来获取答案范围4.4 强化学习5.实验5.1RESUME结果5.2 其他结果6 Ablation Studies6.2问题…

论文阅读课7-使用句子级注意力机制结合实体描述的远程监督关系抽取(APCNN+D)2017

文章目录abstract1. Introduction2.方法3.训练4.实验4.1数据集4.2 评价指标4.3实验结果和分析4.3.1参数设置4.3.2 baseline4.3.3 conclusion5.相关工作5.1监督学习5.2远程监督学习Ji, G., et al. (2017). Distant Supervision for Relation Extraction with Sentence-Level Att…