OpenCV_03 图像的算数操作:图像的加法+图像的混合

1.图像的加法

你可以使用OpenCV的cv.add()函数把两幅图像相加,或者可以简单地通过numpy操作添加两个图像,如res = img1 + img2。两个图像应该具有相同的大小和类型,或者第二个图像可以是标量值。

注意:OpenCV加法和Numpy加法之间存在差异。OpenCV的加法是饱和操作,而Numpy添加是模运算。

参考以下代码:

>>> x = np.uint8([250])
>>> y = np.uint8([10])
>>> print( cv.add(x,y) ) # 250+10 = 260 => 255
[[255]]
>>> print( x+y )          # 250+10 = 260 % 256 = 4
[4]

这种差别在你对两幅图像进行加法时会更加明显。OpenCV 的结果会更好一点。所以我们尽量使用 OpenCV 中的函数。

我们将下面两幅图像:

代码:

import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt# 1 读取图像
img1 = cv.imread("view.jpg")
img2 = cv.imread("rain.jpg")# 2 加法操作
img3 = cv.add(img1,img2) # cv中的加法
img4 = img1+img2 # 直接相加# 3 图像显示
fig,axes=plt.subplots(nrows=1,ncols=2,figsize=(10,8),dpi=100)axes[0].imshow(img3[:,:,::-1])
axes[0].set_title("cv中的加法")axes[1].imshow(img4[:,:,::-1])
axes[1].set_title("直接相加")
plt.show()

结果如下所示:

2.图像的混合

这其实也是加法,但是不同的是两幅图像的权重不同,这就会给人一种混合或者透明的感觉。图像混合的计算公式如下:

g(x) = (1−α)f0(x) + αf1(x)

通过修改 α 的值(0 → 1),可以实现非常炫酷的混合。

现在我们把两幅图混合在一起。第一幅图的权重是0.7,第二幅图的权重是0.3。函数cv2.addWeighted()可以按下面的公式对图片进行混合操作。

dst = α⋅img1 + β⋅img2 + γ

参考以下代码:

import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt# 1 读取图像
img1 = cv.imread("view.jpg")
img2 = cv.imread("rain.jpg")# 2 图像混合 这里γ取为零。
img3 = cv.addWeighted(img1,0.7,img2,0.3,0)# 3 图像显示
plt.figure(figsize=(8,8))
plt.imshow(img3[:,:,::-1])
plt.show()

窗口将如下图显示:


总结

  1. 图像加法:将两幅图像加载一起

    cv.add()

  2. 图像的混合:将两幅图像按照不同的比例进行混合

    cv.addweight()

注意:这里都要求两幅图像是相同大小的。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/469553.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据结构之二叉树:二叉查找树的先序、中序、后序、层序遍历,Python代码实现——10(续)

数据结构之二叉查找树的代码实现 本节继续对上一节BST的功能实现 在实现之前,先对要实现的功能进行一下简单的介绍 BST的几种常见遍历方式 以一个简化的树为例,一棵树包含根(父)结点和其左子树及右子树: 遍历顺序的先后是指根(父)结点被遍…

OpenCV_04 几何变换:图像缩放+图像平移+图像旋转+仿射变换+透射变换+图像金字塔

1 图像缩放 缩放是对图像的大小进行调整,即使图像放大或缩小。 API cv2.resize(src,dsize,fx0,fy0,interpolationcv2.INTER_LINEAR)参数: src : 输入图像 dsize: 绝对尺寸,直接指定调整后图像的大小 fx,fy: 相对尺寸,将dsize设…

Direct2D教程(九)渲染位图

概述 这篇的标题更确切的说应该叫位图画刷,这样才好和前几篇对应起来。在Direct2D中,位图的渲染也是通过画刷来实现的。 Direct2D中并没有直接操作位图的接口,而是借助WIC(Windows Image Component)来完成的。今天我们…

OpenCV_05 形态学操作:连通性+腐蚀和膨胀+开闭运算+礼帽和黑帽

1 连通性 在图像中,最小的单位是像素,每个像素周围有8个邻接像素,常见的邻接关系有3种:4邻接、8邻接和D邻接。分别如下图所示: 4邻接:像素p(x,y)的4邻域是:(x1,y);(x-1,y)&#xff…

数据结构之二叉树:折纸问题——11

数据结构之二叉树:Python代码解决折纸问题 折纸问题 要求:请把一段纸条竖着放在桌子上,然后从纸条的下边向上方对折1次,压出折痕后展开。此时折痕是凹下去的,即折痕突起的方向指向纸条的背面。如果从纸条的下边向上方…

OpenCV_06 图像平滑:图像噪声+图像平滑+滤波

1 图像噪声 由于图像采集、处理、传输等过程不可避免的会受到噪声的污染,妨碍人们对图像理解及分析处理。常见的图像噪声有高斯噪声、椒盐噪声等。 1.1 椒盐噪声 椒盐噪声也称为脉冲噪声,是图像中经常见到的一种噪声,它是一种随机出现的白…

数据结构之堆:堆的介绍与python实现——12

堆的简单实现与代码实现 堆的定义 在定义堆(heap)之前,先回顾一下完全二叉树的定义: 完全二叉树:除了最后一层的结点有可能没有达到最大值外,其它层的结点值都达到最大值,此外最后一层的叶子…

OpenCV_07 直方图:灰度直方图+直方图均衡化

1 灰度直方图 1.1 原理 直方图是对数据进行统计的一种方法,并且将统计值组织到一系列实现定义好的 bin 当中。其中, bin 为直方图中经常用到的一个概念,可以译为 “直条” 或 “组距”,其数值是从数据中计算出的特征统计量&…

OpenCV_08 边缘检测:Sobel检测算子+Laplacian算子+Canny边缘检测

1 原理 边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点。图像属性中的显著变化通常反映了属性的重要事件和变化。边缘的表现形式如下图所示: 图像边缘检测大幅度地减少了数据量,并且剔除了可以…

数据结构之堆:堆的排序,Python代码实现——13

堆的排序,使用Python代码实现 上一节对堆进行了简单的实现,但是实现的堆只是部分有序(父结点大于子结点,子结点之间无序) 接下来我们实现对堆的所有元素进行升序排序 排序过程 实现步骤: 构造堆;得到堆顶元素,这个…

数据结构之优先队列:优先队列的介绍与基础操作实现,Python代码实现——14

优先队列(Priority queue)的介绍 优先队列是计算机中一种抽象的数据结构类,它有着一个类似和队列或者堆的结构,但是其中每个元素额外有一个优先级别在一个优先队列中,一个高优先顺序的元素会先执行与低优先顺序的元素。在它的执行过程中&…

初识--百年孤独

转载于:https://www.cnblogs.com/xmyun/articles/6306290.html

OpenCV_09 模版匹配和霍夫变换:霍夫线检测+霍夫圆检测

1 模板匹配 1.1 原理 所谓的模板匹配,就是在给定的图片中查找和模板最相似的区域,该算法的输入包括模板和图片,整个任务的思路就是按照滑窗的思路不断的移动模板图片,计算其与图像中对应区域的匹配度,最终将匹配度最…

UICollectionView下拉使header放大模糊

模糊主要使用UIVisualEffectView,这只在ios8以后适用 //模糊的遮罩view property(nonatomic,strong) UIVisualEffectView *effectView; property(nonatomic,strong) CollectionviewLayout *layout;CollectionviewLayout *layout [[CollectionviewLayout alloc]init…

数据结构之优先队列:最小索引优先队列,Python代码实现——15

最小索引优先队列(Min index priority queue) 在之前实现的最大优先队列和最小优先队列,他们可以分别快速访问到队列中最大元索和最小元素,但是他们有一 个缺点,就是没有办法通过索引访问已存在于优先队列中的对象,并更新它们。 为了实现这个目的,在优先队列的基础上,学习一种…

OpenCV_10 傅里叶变换:频域滤波+CV的应用

1 傅里叶变换的理解 傅里叶变换是由法国的一位数学家Joseph Fourier在18世纪提出来的,他认为:任何连续周期的信号都可以由一组适当的正弦曲线组合而成。 傅里叶变换是描述信号的需要,它能够反映信号的特征,并可以使用特征值进行量…

OpenCV_11 轮廓检测:图像的轮廓+绘制轮廓+轮廓近似+边界矩形+椭圆拟合+直线拟合

1 图像的轮廓 轮廓可以简单认为成将连续的点(连着边界)连在一起的曲线,具有相同的颜色或者灰度。轮廓是图像目标的外部特征,这种特征对于我们进行图像分析,目标识别和理解等更深层次的处理都有很重要的意义。 轮廓提…

数据结构之平衡树:2-3查找树的介绍——16

平衡树(AVL tree) 引入 之前学习的树,都不是平衡的,查找时需要一个一个往内比较,一个结点只储存一个值,数据量存储较大,树的深度会非常的深,导致数据查询时效率会十分的低&#xf…

OpenCV_12 图像分割:全阈值分割+自适应阈值分割+Otsu 阈值(大津法)+分水岭算法+GraphCut+GrabCut

1 图像分割 所谓图像分割指的是根据灰度、颜色、纹理和形状等特征把图像划分成若干互不交迭的区域,并使这些特征在同一区域内呈现出相似性,而在不同区域间呈现出明显的差异性。我们先对目前主要的图像分割方法做个概述,后面再对个别方法做详…

Android中的IPC机制

Android IPC简介 IPC是Inter-Process Communication的缩写,含义就是进程间通信或者跨进程通信,是指两个进程之间进行数据交换的过程。那么什么是进程,什么是线程,进程和线程是两个截然不同的概念。在操作系统中,线程是…