什么是递归?
递归是一种应用非常广泛的算法(或者编程技巧)。很多数据结构和算法的编码实现都要用到递归,比如 DFS 深度优先搜索、前中后序二叉树遍历等等。
去的过程叫“递”,回来的过程叫“归”
场景
周末你带着女朋友去电影院看电影,女朋友问你,咱们现在坐在第几排啊?电影院里面太黑了,看不清,没法数,现在你怎么办?别忘了你是程序员,这个可难不倒你,递归就开始排上用场了。于是你就问前面一排的人他是第几排,你想只要在他的数字上加一,就知道自己在哪一排了。但是,前面的人也看不清啊,所以他也问他前面的人。就这样一排一排往前问,直到问到第一排的人,说我在第一排,然后再这样一排一排再把数字传回来。直到你前面的人告诉你他在哪一排,于是你就知道答案了。这就是一个非常标准的递归求解问题的分解过程,去的过程叫“递”,回来的过程叫“归”。基本上,所有的递归问题都可以用递推公式来表示。刚刚这个生活中的例子,我们用递推公式将它表示出来就是这样的:
f(n)=f(n-1)+1 其中,f(1)=1
递归需要满足三个条件
1. 一个问题的解可以分解为几个子问题的解
子问题就是数据规模更小的问题。比如,前面讲的电影院的例子,你要知道,“自己在哪一排”的问题,可以分解为“前一排的人在哪一排”这样一个子问题。
2. 这个问题与分解之后的子问题,除了数据规模不同,求解思路完全一样
求解“自己在哪一排”的思路,和前面一排人求解“自己在哪一排”的思路,是一模一样的。
3. 存在递归终止条件
把问题分解为子问题,把子问题再分解为子子问题,一层一层分解下去,不能存在无限循环,这就需要有终止条件。第一排的人不需要再继续询问任何人,就知道自己在哪一排,也就是 f(1)=1,这就是递归的终止条件
如何写递归代码:大问题分解为小问题、写出递推公式、找到终止条件,将递推公式转换为代码
假如这里有 n 个台阶,每次你可以跨 1 个台阶或者 2 个台阶,请问走这 n 个台阶有多少种走法?如果有 7 个台阶,你可以 2,2,2,1 这样子上去,也可以 1,2,1,1,2 这样子上去,总之走法有很多,那如何用编程求得总共有多少种走法呢?我们仔细想下,实际上,可以根据第一步的走法把所有走法分为两类,第一类是第一步走了 1 个台阶,另一类是第一步走了 2 个台阶。所以 n 个台阶的走法就等于先走 1 阶后,n-1 个台阶的走法 加上先走 2 阶后,n-2 个台阶的走法。用公式表示就是:
f(n) = f(n-1)+f(n-2)
终止条件:f(1)=1,f(2)=2
将递推公式和终止条件整合到一起:
/**
f(1) = 1;
f(2) = 2;
f(n) = f(n-1)+f(n-2)
**/int f(int n) {if (n == 1) return 1;if (n == 2) return 2;return f(n-1) + f(n-2);
}
总结:写递归代码的关键就是找到如何将大问题分解为小问题的规律,并且基于此写出递推公式,然后再推敲终止条件,最后将递推公式和终止条件翻译成代码。
递归理解和定势思维误区
- 计算机擅长做重复的事情,所以递归正合它的胃口。而我们人脑更喜欢平铺直叙的思维方式。当我们看到递归时,我们总想把递归平铺展开,脑子里就会循环,一层一层往下调,然后再一层一层返回,试图想搞清楚计算机每一步都是怎么执行的,这样就很容易被绕进去。
- 对于递归代码,这种试图想清楚整个递和归过程的做法,实际上是进入了一个思维误区。很多时候,我们理解起来比较吃力,主要原因就是自己给自己制造了这种理解障碍
- 正确的理解方式:如果一个问题 A 可以分解为若干子问题 B、C、D,你可以假设子问题 B、C、D 已经解决,在此基础上思考如何解决问题 A。而且,你只需要思考问题 A 与子问题 B、C、D 两层之间的关系即可,不需要一层一层往下思考子问题与子子问题,子子问题与子子子问题之间的关系。屏蔽掉递归细节,这样子理解起来就简单多了
递归的弊端
递归代码虽然简洁高效,但是也有不少的弊端
1、递归代码要警惕堆栈溢出
- 函数调用会使用栈来保存临时变量。每调用一个函数,都会将临时变量封装为栈帧压入内存栈,等函数执行完成返回时,才出栈。系统栈或者虚拟机栈空间一般都不大。如果递归求解的数据规模很大,调用层次很深,一直压入栈,就会有堆栈溢出的风险。
如何避免堆栈溢出
- 限制调用深度:递归调用超过一定深度(比如 1000)之后,我们就不继续往下再递归了,直接返回报错
2、递归代码要警惕重复计算
观察如下示意图,其中递归涉及到多处重复计算
优化方案
为了避免重复计算,我们可以通过一个数据结构(比如散列表)来保存已经求解过的 f(k)。当递归调用到 f(k) 时,先看下是否已经求解过了。如果是,则直接从散列表中取值返回,不需要重复计算,这样就能避免刚讲的问题了。
public int f(int n) {if (n == 1) return 1;if (n == 2) return 2;// hasSolvedList可以理解成一个Map,key是n,value是f(n)if (hasSolvedList.containsKey(n)) {return hasSolvedList.get(n);}int ret = f(n-1) + f(n-2);hasSolvedList.put(n, ret);return ret;
}
3、函数调用耗时多
4、空间复杂度高
递归代码改写为非递归代码
递归有利有弊,利是递归代码的表达力很强,写起来非常简洁;而弊就是空间复杂度高、有堆栈溢出的风险、存在重复计算、过多的函数调用会耗时较多等问题。
那是不是所有的递归代码都可以改为这种迭代循环的非递归写法呢?笼统地讲,是的。因为递归本身就是借助栈来实现的,只不过我们使用的栈是系统或者虚拟机本身提供的,我们没有感知罢了。如果我们自己在内存堆上实现栈,手动模拟入栈、出栈过程,这样任何递归代码都可以改写成看上去不是递归代码的样子。但是这种思路实际上是将递归改为了“手动”递归,本质并没有变,而且也并没有解决前面讲到的某些问题,徒增了实现的复杂度。
如何找到“最终推荐人”
伪代码实现
long findRootReferrerId(long actorId) {Long referrerId = select referrer_id from [table] where actor_id = actorId;if (referrerId == null) return actorId;return findRootReferrerId(referrerId);
}
在实际项目中,上面的代码并不能工作,为什么呢?这里面有两个问题
第一,如果递归很深,可能会有堆栈溢出的问题。第二,如果数据库里存在脏数据,我们还需要处理由此产生的无限递归问题。比如 demo 环境下数据库中,测试工程师为了方便测试,会人为地插入一些数据,就会出现脏数据。如果 A 的推荐人是 B,B 的推荐人是 C,C 的推荐人是 A,这样就会发生死循环。