使用LangGPT提示词让大模型比较浮点数

使用LangGPT提示词让大模型比较浮点数

  • 背景介绍
  • 环境准备
    • 创建虚拟环境
    • 安装一些必要的库
    • 安装其他依赖
    • 部署大模型
    • 启动图形交互服务
    • 设置提示词与测试
  • LangGPT结构化提示词

背景介绍

LLM在对比浮点数字时表现不佳,经验证,internlm2-chat-1.8b (internlm2-chat-7b)也存在这一问题,本文采用LangGPT 进行结构化提示词设计,让internlm2-chat-1_8b能够正确比较浮点数。(注意:估计1.8B的对话能力比较弱,别把模型带偏了:))

本文使用书生浦语的开发机环境InternStudio来部署模型与实验。

环境准备

创建虚拟环境

conda create -n langgpt python=3.10 -y
conda activate langgpt

安装一些必要的库

conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y

安装其他依赖

pip install transformers==4.43.3pip install streamlit==1.37.0
pip install huggingface_hub==0.24.3
pip install openai==1.37.1
pip install lmdeploy==0.5.2

部署大模型

CUDA_VISIBLE_DEVICES=0 lmdeploy serve api_server /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b --server-port 23333 --api-keys internlm2

在这里插入图片描述

启动图形交互服务

git clone https://github.com/InternLM/Tutorial.gitcd Tutorial
checkout camp3
cd tools# 启动服务
python -m streamlit run chat_ui.py

在这里插入图片描述

设置提示词与测试

做端口映射后,就可以访问UI了。

ssh -p {ssh端口,从InternStudio获取} root@ssh.intern-ai.org.cn -CNg -L 7860:127.0.0.1:8501 -o StrictHostKeyChecking=no

浏览器打开 http://127.0.0.1:8501/后,
在“系统提示”中贴入如下,然后点击“保存设置”,就可以对话了。

# Role: 浮点数比较小助手## Profile
- author: 向阳智能
- version: 1.0
- language: 中文
- description: 我是一个浮点数比较小助手,能够精确的比较两个浮点数的大小,不会出现失误。## Background: 
用户需要比较两个数值字符串的大小,以确定哪个数值更大## Skills
1. 接收两个准备比较的浮点数,并判断他们是浮点数
2. 比较浮点数的大小
3. 精确的结果比较的结果
4. 给出简单的解释## Rules
1. 必须明确这是浮点数的大小比较,而不是字符串的比较
2. 回答需要简洁明了,避免过于复杂或含糊的表述。
3. 始终使用浮点数大小判断的方式来回答,不要被别人带偏了
4. 不要动不动说自己之前回答是错误的,若之前回答是正确的,你要坚持自己的结论
5. 不要被其他的假设带偏了## Workflows
1. 将待比较的两个数字字符串,转换成浮点数大小比较的方式来比较

在这里插入图片描述

LangGPT结构化提示词

LangGPT 是 Language For GPT-like LLMs 的简称,中文名为结构化提示词。LangGPT 是一个帮助你编写高质量提示词的工具,理论基础是我们提出的一套模块化、标准化的提示词编写方法论——结构化提示词。LangGPT社区文档:https://langgpt.ai

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/879864.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java:List<String> 转换List<BigDecimal> 并求和

/*** <b>Function: </b> todo** program: List<String> 转换List<BigDecimal> 并求和* Package: com.kingbal.king.dmp* author: dingcho* date: 2024/09/20* version: 1.0* Copyright: 2024 www.kingbal.com Inc. All rights reserved.*/ Slf4j publi…

HObject复制耗时试用

测试源码一 //第一步const int N 1000;HObject[] imgs new HObject[N];for (int i 0; i < N; i){HOperatorSet.GenImageConst(out imgs[i], "byte", 1024 i, 1024 i);}//第二步List<HObject> lists new List<HObject>();for(int i 0; i < …

使用 uni-app 开发微信小程序的详细指南

使用 uni-app 开发微信小程序的详细指南 前言 随着微信小程序的广泛应用&#xff0c;越来越多的开发者开始关注小程序开发。而 uni-app 是 DCloud 推出的一个使用 Vue.js 开发跨平台应用的框架&#xff0c;不仅支持开发 H5、iOS 和 Android 应用&#xff0c;还可以用于开发微…

微博舆情分析技术文档分享

项目整体介绍&#xff1a;舆情瞭望——基于NLP的网络空间舆情检测分析系统 1. 项目背景与目标 该项目旨在对微博文章及其评论进行文本分析&#xff0c;重点包括情感分析和词频统计。通过对大量用户评论的处理与分析&#xff0c;帮助用户了解公众情绪和话题趋势&#xff0c;特…

基于PHP的新闻管理系统

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、SSM项目源码 系统展示 【2025最新】基于phpMySQL的新闻管理系统。…

MySQL的缓存策略

目录 一、MySQL 缓存方案用来干什么 二、提升MySQL访问性能的方式 1、读写分离&#xff08;MySQL的主从复制&#xff09; 2、连接池 3、异步连接 三、缓存方案是怎么解决的 1、缓存与MySQL一致性状态分析 2、制定热点数据的读写策略 四、缓存方案问题的解决方法 1、缓…

酸枣病虫害智能化防控系统的探索与实践,基于YOLOv5全系列【n/s/m/l/x】参数模型开发构建枣类作物种植场景下酸枣病虫害智能检测识别系统

智慧农业&#xff0c;作为现代农业的高级形态&#xff0c;通过集成物联网、大数据、人工智能等先进技术&#xff0c;实现了农业生产过程的精准化、智能化管理。在酸枣等经济作物的种植过程中&#xff0c;病虫害的及时监测与防控直接关系到作物的产量与质量&#xff0c;进而影响…

react hooks--React.memo

基本语法 React.memo 高阶组件的使用场景说明&#xff1a; React 组件更新机制&#xff1a;只要父组件状态更新&#xff0c;子组件就会无条件的一起更新。 子组件 props 变化时更新过程&#xff1a;组件代码执行 -> JSX Diff&#xff08;配合虚拟 DOM&#xff09;-> 渲…

算法【双向广搜】

双向广搜常见用途 1&#xff1a;小优化。bfs的剪枝策略&#xff0c;分两侧展开分支&#xff0c;哪侧数量少就从哪侧展开。 2&#xff1a;用于解决特征很明显的一类问题。特征&#xff1a;全量样本不允许递归完全展开&#xff0c;但是半量样本可以完全展开。过程&#xff1a;把…

Knife4j 一款基于Swagger的开源文档管理工具

一、简单介绍 1.1 简介 Knife4j 是一款基于Swagger的开源文档管理工具&#xff0c;主要用于生成和管理 API 文档 二、使用步骤&#xff1a; 2.1 添加依赖&#xff1a; <dependency><groupId>com.github.xiaoymin</groupId><artifactId>knife4j-spr…

使用sqoop报错

报错一&#xff1a; java.io.IOException: java.lang.ClassNotFoundException: org.apache.hadoop.hive.conf.HiveConf 这个错误表示在执行与 Hive 相关的操作时&#xff0c;程序无法找 org.apache.hadoop.hive.conf.HiveConf 这个类。这个类是 Hive 的配置类&#xff0c;它用…

spark之不同序列化对比

一&#xff0c;spark的rdd的序列话不同介绍 下面是使用不同序列化后的占用资源和数据大小 2&#xff0c;sparksql中序列化的区别 sparksql中使用序列化和不使用差别不大&#xff0c;英文sparksql中默认使用了encode自己实现的序列化方法&#xff0c;加上与不加序列化差别不大…

编译成功!QT/6.7.2/Creator编译Windows64 MySQL驱动(MSVC版)

相邻你找了很多博文&#xff0c;都没有办法。现在终于找到了正宗。 参考 GitHub - thecodemonkey86/qt_mysql_driver: Typical symptom: QMYSQL driver not loaded. Solution: get pre-built Qt SQL driver plug-in required to establish a connection to MySQL / MariaDB u…

.whl文件下载及pip安装

以安装torch_sparse库为例 一、找到自己需要的版本&#xff0c;点击下载。 去GitHub的pyg-team主页中找到pytorch-geometric包。网址如下&#xff1a; pyg-team/pytorch_geometric​github.com/pyg-team/pytorch_geometric 然后点击如图中Additional Libraries位置的here&am…

Leetcode Hot 100刷题记录 -Day18(反转链表)

反转链表&#xff1a; 问题描述&#xff1a; 给你单链表的头节点 head &#xff0c;请你反转链表&#xff0c;并返回反转后的链表。 示例 1&#xff1a; 输入&#xff1a;head [1,2,3,4,5] 输出&#xff1a;[5,4,3,2,1]示例 2&#xff1a; 输入&#xff1a;head [1,2] 输出&a…

基于阿里云免费部署Qwen1-8B-chat模型并进行lora参数微调从0到1上手操作

文章目录 一、申请资源二、创建实例三、克隆微调数据四、部署Qwen1-8B-chat模型1、环境配置2、模型下载3、本地模型部署 五、模型微调1、拉取Qwen仓库源码2、微调配置3、合并微调参数4、本地部署微调模型 一、申请资源 阿里云账号申请PAI资源详细教程我已于部署ChatGLM3时写过…

双立方(三次)卷积插值

前言 图像处理中有三种常用的插值算法&#xff1a; 最邻近插值 双线性插值 双立方&#xff08;三次卷积&#xff09;插值 其中效果最好的是双立方&#xff08;三次卷积&#xff09;插值&#xff0c;本文介绍它的原理以及使用 如果想先看效果和源码&#xff0c;可以拉到最底…

关于若尔当矩阵中过渡矩阵的求法

关于若尔当矩阵中过渡矩阵的求法 豆瓜爱数学 ​关注 桜井雪子 等 114 人赞同了该文章 本文主要介绍考研中常考的另一类问题&#xff0c;当我们确认一个Jordan标准形时&#xff0c;对于过渡矩阵如何确定&#xff1f;这个常常是我们复习过程中容易忽略的一部分内容&#xff0c;…

Ubuntu 22.04 源码下载的几种方法

1、查询当前系统内核版本 rootubuntu22:~# uname -r 5.15.0-118-generic 2、查询本地软件包数据库中的内核源码信息 rootubuntu22:~# apt search linux-source Sorting... Done Full Text Search... Done linux-source/jammy-updates,jammy-security,now 5.15.0.119.119 all…

Gateway学习笔记

目录 介绍&#xff1a; 核心概念 依赖 路由 断言 基本的断言工厂 自定义断言 过滤器 路由过滤器 过滤器工厂 自定义路由过滤器 全局过滤器 其他 过滤器执行顺序 前置后置&#xff08;&#xff1f;&#xff09; 跨域问题 yaml 解决 配置类解决 介绍&#x…