[POJ 3164]Command Network(最小树形图,朱刘算法)

文章目录

  • title
  • solution
  • code

title

solution

读完翻译后,很明显就是个朱刘算法的板子题
在这里插入图片描述

最小树形图,就是给出一个带权有向图
从中指定一个特殊的结点 root
求一棵以 root 为根的有向生成树 T,且使得 T 中所有边权值最小
简单来说,最小树形图就是有向图的最小生成树

朱刘算法分为四个过程:
1)求最短弧集合 E

集合E:对于每个点viv_ivi(根除外),viv_ivi的入边最小权值in[vi]in[v_i]in[vi]所构成的集合

2)判断集合 E 中有没有有向环,如果有转步骤 3,否则转步骤 4

3)收缩点,把有向环收缩成一个点,并且对图重新构建,包括边权值的改变和点的处理,之后再转步骤 1

权值改变方式:
1.该边两个点属于同一个环——权值保持不变
2.该边两个点属于不同环——权值➖边的入点(即有向边指向的那个点vvv)的最小入边权值in[v]in[v]in[v]

4)展开收缩点,求得最小树形图
在这里插入图片描述

code

#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;
#define MAXN 105
#define inf 0x3f3f3f3f
struct node {int u, v;double w;node(){}node( int U, int V, double W ) {u = U, v = V, w = W;}
}edge[MAXN * MAXN];
double x[MAXN], y[MAXN], in[MAXN];
int vis[MAXN], id[MAXN], pre[MAXN];double pigcow( int rt, int n, int m ) {memset( id, 0, sizeof( id ) );double ans = 0;while( 1 ) {for( int i = 1;i <= n;i ++ ) in[i] = inf;for( int i = 1;i <= m;i ++ ) {int u = edge[i].u, v = edge[i].v;double w = edge[i].w;if( w < in[v] && u != v )pre[v] = u, in[v] = w;} for( int i = 1;i <= n;i ++ ) {if( i == rt ) continue;if( in[i] == inf ) return -1;}int cnt = 0;in[rt] = 0;memset( id, 0, sizeof( id ) );memset( vis, 0, sizeof( vis ) ); for( int i = 1;i <= n;i ++ ) {ans += in[i];int t = i;while( vis[t] != i && ! id[t] && t != rt )vis[t] = i, t = pre[t];if( t != rt && ! id[t] ) {++ cnt;for( int fa = pre[t];fa != t;fa = pre[fa] )id[fa] = cnt;id[t] = cnt;}}if( ! cnt ) break;for( int i = 1;i <= n;i ++ )if( ! id[i] ) id[i] = ++ cnt;for( int i = 1;i <= m;i ++ ) {int u = edge[i].u, v = edge[i].v;edge[i].u = id[u], edge[i].v = id[v];if( id[u] != id[v] ) edge[i].w -= in[v];}n = cnt;rt = id[rt];}return ans; 
}double calc( int u, int v ) {return sqrt( ( x[u] - x[v] ) * ( x[u] - x[v] ) + ( y[u] - y[v] ) * ( y[u] - y[v] ) );
}int main() {int n, m;while( ~ scanf( "%d %d", &n, &m ) ) {for( int i = 1;i <= n;i ++ )scanf( "%lf %lf", &x[i], &y[i] ); for( int i = 1, u, v;i <= m;i ++ ) {scanf( "%d %d", &u, &v );edge[i] = node( u, v, calc( u, v ) );}double ans = pigcow( 1, n, m );if( ans != -1 ) printf( "%.2f\n", ans );else printf( "poor snoopy\n" );}return 0;
} 

其实就是为了存个板子,哈哈哈哈哈
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/317835.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ASP.NET Core 3.0:将会拥有更少的依赖

在ASP.NET Core项目中&#xff0c;我们使用一个叫做Microsoft.AspNetCore.App的综合包。它也被称为ASP.NET Core Shared Framework&#xff0c;在ASP.NET Core Shared Framework之中包含了很多依赖项&#xff0c;它能满足一般应用的需求。但是如果你查看它的依赖项&#xff0c;…

CSP2021NOIP2021游记

CSP Day -? 初赛 初赛考前没怎么复习&#xff0c;反倒是理直气壮的翘了一周晚修&#xff08;虽然后面就一直翘了&#xff09;。 开考之后才发现要拿那几张纸&#xff0c;监考让我考完再出去拿。 选择题很简单&#xff0c;没有啥犹豫的写完了&#xff0c;第一道读程序写结果好…

微软上线Try .NET,支持在浏览器运行C#代码

微软Try .NET项目近期上线&#xff0c;这一项目允许用户通过浏览器运行和编写C#代码&#xff0c;同时还支持完整的代码提示。用户可以通过访问这一项目官网&#xff08;点此进入&#xff09;对Try .NET这一项目进行简单了解。该项目允许开发人员在浏览器中运行和编辑C#代码片段…

[LOJ]体育成绩统计 / Score (无脑模拟,没有脑子,就是上!)

题目 好久没敲过恶心的模拟题了&#xff0c;莫名有点怀念是什么鬼&#xff0c;我还记得我的zamjena 没啥想说的&#xff0c;这道题就是没智商有码力的 纯粹是纪念一下今天上午直接肝了的两个半小时&#xff0c;真的一点思维都不需要有&#xff0c;直接上&#xff01;&#xff0…

程序员修仙之路--设计一个实用的线程池

菜菜呀&#xff0c;我最近研究技术呢&#xff0c;发现线上一个任务程序线程数有点多呀CEO,CTO,CFO于一身的CXOx总&#xff0c;你学编程呢&#xff1f;菜菜作为公司总负责人&#xff0c;我以后还要管理技术部门呢&#xff0c;怎么能不会技术呢CEO,CTO,CFO于一身的CXO&#xff08…

Code Names

Code Names 题意&#xff1a; 如果一个字符串通过交换两个位置可以得到另一个字符串&#xff08;也就是两个字符串只有两个位置不一样且为交换关系&#xff09;&#xff0c;我们称这两个字符串为替代关系。 现在给出n个字符串&#xff0c;求一个集合&#xff0c;使得集合内的…

【2020牛客NOIP赛前集训营-提高组(第一场)题解】( 牛牛的方程式,牛牛的猜球游戏,牛牛的凑数游戏,牛牛的RPG游戏)

未完待续...T1&#xff1a;牛牛的方程式titlesolutioncodeT2&#xff1a;牛牛的猜数游戏titlesolutioncodeT3&#xff1a;牛牛的凑数游戏titlesolutioncodeT1&#xff1a;牛牛的方程式 title solution 因为浮点错误炸了70pts 这个三元一次不定方程呢&#xff0c;其实也没有…

程序员修仙之路-数据结构之 CXO让我做一个计算器

菜菜呀&#xff0c;个税最近改革了&#xff0c;我得重新计算你的工资呀&#xff0c;我需要个计算器&#xff0c;你开发一个吧CEO,CTO,CFO于一身的CXOX总&#xff0c;咱不会买一个吗&#xff1f;菜菜那不得花钱吗&#xff0c;一块钱也是钱呀这个计算器支持加减乘除运算就行&…

P5518-[MtOI2019]幽灵乐团【莫比乌斯反演,欧拉反演】

正题 题目链接:https://www.luogu.com.cn/problem/P5518 题目大意 TTT次给出A,B,CA,B,CA,B,C求以下三个式子 ∏i1A∏j1B∏k1Clcm(i,j)gcd(i,k)\prod_{i1}^A\prod_{j1}^B\prod_{k1}^{C}\frac{lcm(i,j)}{gcd(i,k)}i1∏A​j1∏B​k1∏C​gcd(i,k)lcm(i,j)​ ∏i1A∏j1B∏k1C(lcm(…

【2020牛客NOIP赛前集训营-提高组(第二场)】题解(GCD,包含,前缀,移动)

文章目录T1&#xff1a;GCDtitlesolutioncodeT2&#xff1a;包含titlesolutioncode(正解code补充在上面了)T3&#xff1a;前缀titlesolutioncodeT4&#xff1a;移动titlesolutioncodeT1&#xff1a;GCD title solution 非常水&#xff0c;看一眼就知道了 首先我们知道每一个…

.NET Core实战项目之CMS 第十五章 各层联动工作实现增删改查业务

连着两天更新叙述性的文章大家可别以为我转行了&#xff01;哈哈&#xff01;今天就继续讲讲我们的.NET Core实战项目之CMS系统的教程吧&#xff01;这个系列教程拖得太久了&#xff0c;所以今天我就以菜单部分的增删改查为例来讲述下我的项目分层之间的协同工作吧&#xff01;…

[2020-11-23 contest]图(dfs剪枝),劫富济贫(字典树),小A的树(树形DP),游戏(贪心/斜率优化)

文章目录T1&#xff1a;图solutioncodeT2&#xff1a;劫富济贫solutioncodeT3&#xff1a;小A的树solutioncodeT4&#xff1a;游戏solutioncodeT1&#xff1a;图 【问题描述】 给你一个n个点&#xff0c;m条边的无向图&#xff0c;每个点有一个非负的权值ci&#xff0c;现在你…

P1742 最小圆覆盖

P1742 最小圆覆盖 题意&#xff1a; 给出N个点&#xff0c;让你画一个最小的包含所有点的圆。 题解&#xff1a; 先说结论&#xff1a; 最优解的圆一定是在以某两个点连线为直径的圆 或者 某三个点组成的三角形的外接圆 初始化将某个圆心定为第一个点&#xff0c;R0 枚举第…

Java实现非对称加密【详解】

Java实现非对称加密 1. 简介2. 非对称加密算法--DH&#xff08;密钥交换&#xff09;3. 非对称加密算法--RSA非对称加密算法--EIGamal5. 总结6 案例6.1 案例16.2 案例26.3 案例3 1. 简介 公开密钥密码学&#xff08;英语&#xff1a;Public-key cryptography&#xff09;也称非…

轻量级.Net Core服务注册工具CodeDi发布啦

为什么做这么一个工具因为我们的系统往往时面向接口编程的,所以在开发Asp .net core项目的时候,一定会有大量大接口及其对应的实现要在ConfigureService注册到ServiceCollection中,传统的做法是加了一个服务,我们就要注册一次(service.AddService()),又比如,当一个接口有多个实…

2020 CSP-S 游记

迟到的游记总述T1&#xff1a;儒略日T2&#xff1a;动物园T3&#xff1a;函数调用T4&#xff1a;贪吃蛇总结总述 可能是有了去年第一次的狂炸经历&#xff0c;很明显的就是在考试策略上的提升 头不铁了&#xff0c;手不残了&#xff0c;心态稳了&#xff0c;分也多了 T1&…

P7516-[省选联考2021A/B卷]图函数【bfs】

正题 题目链接:https://www.luogu.com.cn/problem/P7516 题目大意 懒了&#xff0c;直接抄题意了 对于一张 nnn 个点 mmm 条边的有向图 GGG&#xff08;顶点从 1∼n1 \sim n1∼n 编号&#xff09;&#xff0c;定义函数 f(u,G)f(u, G)f(u,G)&#xff1a; 初始化返回值 cnt0cn…

【.NET Core项目实战-统一认证平台】第十三章 授权篇-如何强制有效令牌过期

上一篇我介绍了JWT的生成验证及流程内容&#xff0c;相信大家也对JWT非常熟悉了&#xff0c;今天将从一个小众的需求出发&#xff0c;介绍如何强制令牌过期的思路和实现过程。.netcore项目实战交流群&#xff08;637326624&#xff09;&#xff0c;有兴趣的朋友可以在群里交流讨…

[2020-11-24 contest]糖果机器(二维偏序),手套(状压dp),甲虫(区间dp),选举(线段树 最大子段和)

文章目录T1&#xff1a;糖果机器solutioncodeT2&#xff1a;手套solutioncodeT3&#xff1a;甲虫solutioncodeT4&#xff1a;选举solutioncodeT1&#xff1a;糖果机器 solution 考虑从第iii个糖果出发能到达第jjj个&#xff0c;则有Tj−Ti≥∣Sj−Si∣T_j-T_i≥|S_j-S_i|Tj​…

ASP.NET Core 数据加解密的一些坑

点击蓝字关注我ASP.NET Core 给我们提供了自带的Data Protection机制&#xff0c;用于敏感数据加解密&#xff0c;带来方便的同时也有一些限制可能引发问题&#xff0c;这几天我就被狠狠爆了一把我的场景我的博客系统有个发送邮件通知的功能&#xff0c;因此需要配置一个邮箱账…