P7137 [THUPC2021 初赛] 切切糕(博弈 概率)

P7137 [THUPC2021 初赛] 切切糕

-> 双倍经验:Game on Sum (Hard Version)

\(n\) 块方蛋糕,绝顶聪明的 Sight 和 Sirrel 决定将每块蛋糕都分成两块各自品尝。Sight 会依次将每块蛋糕分成两块,而 Sirrel 有 \(m\) 次优先选择权。

对于 \(n\) 轮操作,每一次 Sight 会先选择一块蛋糕,将它随意分成任意大小分配的两块(可以是实数);如果 Sirrel 还有剩余的优先选择权,她可以选择一块,否则由 Sight 优先选择。

最终两人都希望自己得到的蛋糕总量最大,求 Sight 能得到的最大蛋糕总和。

\(n\le 2500,A_i\le 5\times 10^4\)

由于优先选择权在 Sirrel 手里,我们不妨以她作为主视角考虑问题。而且如果以 Sight 的视角来看,直接由方程解出的 \(x\) 可能会大于 \(A_i\) 不合法,而 Sirrel 直接不适用优先权即可。

\(\bigstar\texttt{Important}\):一般博弈论的 DP 题都是从后往前 DP,即从确定的终止状态向初始状态 DP,因为绝顶聪明这一条件使得双方都能预测到他们当前的行为对后续局面的影响,可以说只有后效性而没有前效性。若 \(i, j\) 确定,则两人之前的决策对当前决策无影响。

因此,设 \(f_{i,j}\) 表示已经分完了 \(i\) 块蛋糕,Sirrel 使用了 \(j\) 次选择权的最大收益,设这一次切出的蛋糕大小为 \(x>A_i-x\),分两类讨论:

  • 如果使用了一次选择权,收益为 \(f_{i-1,j-1}+x\)
  • 如果没有使用,收益为 \(f_{i-1,j}+A_i-x\)

那么综合收益为 \(\min\{f_{i-1,j-1}+x,f_{i-1,j}+A_i-x\}\)

那么如果可爱邪恶的 Sight 要让她尽可能收益少,就需要让两者相等。则收益为 \(\dfrac{f_{i-1,j-1}+f_{i-1,j}+A_i}{2}\)

直接 DP 就行啦!。。?真的吗?

发现可爱邪恶的 Sight 会先切大小较小的蛋糕,这会让爱可爱的 Sirrel 更加为难。先排序。

#define Maxn 2505
int n,m;
double a[Maxn],sum[Maxn],f[Maxn][Maxn];
bool cmp(double x,double y){ return x>y; }
int main()
{n=rd(),m=rd();for(int i=1;i<=n;i++) scanf("%lf",&a[i]);sort(a+1,a+n+1,cmp);for(int i=1;i<=n;i++) sum[i]=sum[i-1]+a[i];for(int i=1;i<=n;i++){f[i][0]=0,f[i][i]=sum[i]/2.0;for(int j=1;j<i;j++) f[i][j]=fmax((f[i-1][j]+f[i-1][j-1]+a[i])/2.0,f[i-1][j]);}printf("%.6lf\n",sum[n]-f[n][m]);return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/317820.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

程序员修仙之路--设计一个实用的线程池

菜菜呀&#xff0c;我最近研究技术呢&#xff0c;发现线上一个任务程序线程数有点多呀CEO,CTO,CFO于一身的CXOx总&#xff0c;你学编程呢&#xff1f;菜菜作为公司总负责人&#xff0c;我以后还要管理技术部门呢&#xff0c;怎么能不会技术呢CEO,CTO,CFO于一身的CXO&#xff08…

Code Names

Code Names 题意&#xff1a; 如果一个字符串通过交换两个位置可以得到另一个字符串&#xff08;也就是两个字符串只有两个位置不一样且为交换关系&#xff09;&#xff0c;我们称这两个字符串为替代关系。 现在给出n个字符串&#xff0c;求一个集合&#xff0c;使得集合内的…

CSP2019洛谷P5665:划分(单调队列,高精度)

解析 自己写的时候写了二维单调队列优化的64分 一次过还是可以满意了啦 正解的关键结论是最优的方案的最后一段一定尽可能的短 原因嘛…显然 贪心的想&#xff0c;再最后一段的段首可以往前放的情况下肯定是要往前放的&#xff0c;这样代价更小&#xff0c;同时对后面的选取也…

P7962-[NOIP2021]方差【dp,差分】

正题 题目链接:https://www.luogu.com.cn/problem/P7962 题目大意 给出一个长度为nnn的序列aaa&#xff0c;你每次可以让一个ai(1<i<n)ai−1ai1−aia_i(1<i<n)a_{i-1}a_{i1}-a_iai​(1<i<n)ai−1​ai1​−ai​&#xff0c;求能变出的最小方差。 1≤n≤400,…

【2020牛客NOIP赛前集训营-提高组(第一场)题解】( 牛牛的方程式,牛牛的猜球游戏,牛牛的凑数游戏,牛牛的RPG游戏)

未完待续...T1&#xff1a;牛牛的方程式titlesolutioncodeT2&#xff1a;牛牛的猜数游戏titlesolutioncodeT3&#xff1a;牛牛的凑数游戏titlesolutioncodeT1&#xff1a;牛牛的方程式 title solution 因为浮点错误炸了70pts 这个三元一次不定方程呢&#xff0c;其实也没有…

[AGC041F] Histogram Rooks(神仙题 网格 容斥计数)

[AGC041F] Histogram Rooks 给定一个 \(N\) 行 \(N\) 列的棋盘&#xff0c;第 \(i\) 行只有 \([1,h_i]\) 是有格子的&#xff0c;其他都是虚空。 一个棋子放在一个格子上&#xff0c;我们称一个格子被一个棋子覆盖&#xff0c;仅当这个格子与这个棋子在同一行或同一列&#xff…

程序员修仙之路-数据结构之 CXO让我做一个计算器

菜菜呀&#xff0c;个税最近改革了&#xff0c;我得重新计算你的工资呀&#xff0c;我需要个计算器&#xff0c;你开发一个吧CEO,CTO,CFO于一身的CXOX总&#xff0c;咱不会买一个吗&#xff1f;菜菜那不得花钱吗&#xff0c;一块钱也是钱呀这个计算器支持加减乘除运算就行&…

2021年度训练联盟热身训练赛第一场

2021年度训练联盟热身训练赛第一场 文章目录D.Some Sum题意&#xff1a;题解&#xff1a;代码&#xff1a;F.Pulling Their Weight题意&#xff1a;题解&#xff1a;代码&#xff1a;H On Average Theyre Purple题意&#xff1a;题解&#xff1a;代码&#xff1a;J This Aint Y…

10.17模拟

小题大作&#xff0c;必死无疑 前言 220 6010060 很久没有在CSDN上写总结了 因为这次真的犯了巨大的策略性错误&#xff01; 一句话说就是&#xff1a;要写有得分与时间相比有性价比的东西 考场 先看题 T2无疑是水题 T134相比感觉T3更可作 T1一看直接当成了神仙网络流题 受到…

P5518-[MtOI2019]幽灵乐团【莫比乌斯反演,欧拉反演】

正题 题目链接:https://www.luogu.com.cn/problem/P5518 题目大意 TTT次给出A,B,CA,B,CA,B,C求以下三个式子 ∏i1A∏j1B∏k1Clcm(i,j)gcd(i,k)\prod_{i1}^A\prod_{j1}^B\prod_{k1}^{C}\frac{lcm(i,j)}{gcd(i,k)}i1∏A​j1∏B​k1∏C​gcd(i,k)lcm(i,j)​ ∏i1A∏j1B∏k1C(lcm(…

【2020牛客NOIP赛前集训营-提高组(第二场)】题解(GCD,包含,前缀,移动)

文章目录T1&#xff1a;GCDtitlesolutioncodeT2&#xff1a;包含titlesolutioncode(正解code补充在上面了)T3&#xff1a;前缀titlesolutioncodeT4&#xff1a;移动titlesolutioncodeT1&#xff1a;GCD title solution 非常水&#xff0c;看一眼就知道了 首先我们知道每一个…

.NET Core实战项目之CMS 第十五章 各层联动工作实现增删改查业务

连着两天更新叙述性的文章大家可别以为我转行了&#xff01;哈哈&#xff01;今天就继续讲讲我们的.NET Core实战项目之CMS系统的教程吧&#xff01;这个系列教程拖得太久了&#xff0c;所以今天我就以菜单部分的增删改查为例来讲述下我的项目分层之间的协同工作吧&#xff01;…

Early Orders

题意&#xff1a; 给你一个整数列表 x1&#xff0c;x2&#xff0c;&#xff0c;… &#xff0c;xn 和一个数字 k&#xff0c;它保证从1到 k 的每个 i 至少出现在列表中一次。 现在求一个字典序最小的子序列&#xff0c;子序列有1到k组成 题解&#xff1a; 单调栈求解 我们先…

NOIP2020洛谷P7115:移球游戏(分治)

解析 先考虑n2的情况 可以利用一个空队在不超过5m的操作次数下把两个满队还原 如何推广&#xff1f; 考虑分治 把[l,mid]的球看成同色&#xff0c;[mid1,r]的球看成同色 在左右两两匹配柱子进行n2的还原操作 最后在递归处理 操作次数&#xff1a;5mnlogn 代码 #include<b…

[2020-11-23 contest]图(dfs剪枝),劫富济贫(字典树),小A的树(树形DP),游戏(贪心/斜率优化)

文章目录T1&#xff1a;图solutioncodeT2&#xff1a;劫富济贫solutioncodeT3&#xff1a;小A的树solutioncodeT4&#xff1a;游戏solutioncodeT1&#xff1a;图 【问题描述】 给你一个n个点&#xff0c;m条边的无向图&#xff0c;每个点有一个非负的权值ci&#xff0c;现在你…

P7519-[省选联考 2021 A/B 卷]滚榜【状压dp】

正题 题目链接:https://www.luogu.com.cn/problem/P7519 题目大意 nnn个队伍&#xff0c;队伍之间按照得分从小到大排名&#xff0c;得分相同的按照编号从小到大排。开始时每个队伍有个初始得分aia_iai​&#xff0c;和一个额外分bib_ibi​&#xff0c;主持人会按照bib_ibi​不…

4383 [八省联考 2018] 林克卡特树(WQS 二分+DP)

P4383 [八省联考 2018] 林克卡特树 给定一颗 \(n\) 个点的树&#xff0c;每条边有边权 \(v(|v|\le 10^6)\)&#xff0c;要求删去其中任意 \(k\) 条边&#xff0c;使得剩余联通块的直径之和最大。求出这个最大值。 \(0\le k<n\le 3\times 10^5,10s,1GB\)。 问题是怎么求直径&…

P1742 最小圆覆盖

P1742 最小圆覆盖 题意&#xff1a; 给出N个点&#xff0c;让你画一个最小的包含所有点的圆。 题解&#xff1a; 先说结论&#xff1a; 最优解的圆一定是在以某两个点连线为直径的圆 或者 某三个点组成的三角形的外接圆 初始化将某个圆心定为第一个点&#xff0c;R0 枚举第…

Java实现非对称加密【详解】

Java实现非对称加密 1. 简介2. 非对称加密算法--DH&#xff08;密钥交换&#xff09;3. 非对称加密算法--RSA非对称加密算法--EIGamal5. 总结6 案例6.1 案例16.2 案例26.3 案例3 1. 简介 公开密钥密码学&#xff08;英语&#xff1a;Public-key cryptography&#xff09;也称非…

轻量级.Net Core服务注册工具CodeDi发布啦

为什么做这么一个工具因为我们的系统往往时面向接口编程的,所以在开发Asp .net core项目的时候,一定会有大量大接口及其对应的实现要在ConfigureService注册到ServiceCollection中,传统的做法是加了一个服务,我们就要注册一次(service.AddService()),又比如,当一个接口有多个实…