CF 1529D Kavi on Pairing Duty

CF 1529D Kavi on Pairing Duty

题意:

有2 * n个点,现在要求两个点连成线段,每个连法都可以得到n个线段,合法的连接方式为:连接的n个线段,任意两个线段要么长度相等,要么有包含关系
n<=1e6

题解:

思维题+推公式
我们设dp[n]:表示2 * n点时合法的线段个数
题目有两个限制条件,我们先考虑第一个:
如果有包含关系的话:
如图

  1. 连接点1和点2n,得到线段(1,2n),此时剩下2n-2个点都在这个线段之下,而中2n-2个点的组合与外面这个线段无关,不正是dp[n-1]吗,所以方案数就是 1 * dp[n-1]
  2. 连接线段(1,2n-1),(2,2n),此时剩下2n-4个点在这两个线段之下,同上,方案数为dp[n-2],
  3. 以此类推可以得到:存在线段包含的情况下有Σi=0n-1dp[i]
    在这里插入图片描述
    我们考虑所有线段都相等的情况(此时不存在线段包含):
    如图,图中为n=4的线段都相等不存在包含的情况:
    在这里插入图片描述

第一个为长度为1,第二个为长度为2,第三个为长度为3,第四个为长度为4,如果再长就超出去了,我们发现第三个是不合法的,通过举例观察就会发现,只有当长度为n的因子时,才是合法的,因为只有因子才能够分配均匀。所以这种情况答案就是n的因子个数,但是这样并不完全对,我们看第二个图的最后一个情况,和第一个图的最后一个情况竟然是一样的,出现了重复,为了去重,所以我们定义第二个情况的答案为n的因子个数-1
约数个数可以用线性筛求,直接求会超时(n最大到1e6)
最终答案为两者相加:
在这里插入图片描述
dp[0]=1

代码:

#include<bits/stdc++.h>
#define debug(a,b) printf("%s = %d\n",a,b);
typedef long long ll;
using namespace std;inline int read(){int s=0,w=1;char ch=getchar();while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}while(ch>='0'&&ch<='9') s=s*10+ch-'0',ch=getchar();//s=(s<<3)+(s<<1)+(ch^48);return s*w;
}
const int maxn=1e6+9;
const int mod=998244353;
ll siz[maxn];
ll dp[maxn];
ll sum[maxn];
int main()
{int n;cin>>n;for(int i=1;i<=n;i++){//fac[i]表示i的因子的个数 for(int j=i;j<=n;j+=i){siz[j]=(siz[j]+1)%mod;}}dp[0]=1; sum[0]=1;//sum[i]=a[0]+...+a[i]for(int i=1;i<=n;i++){dp[i]=(sum[i-1]+siz[i]-1)%mod;sum[i]=(sum[i-1]+dp[i])%mod;}cout<<dp[n];
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/316821.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

东莞.NET技术线下沙龙活动资料分享

今天天气虽然很不好&#xff0c;但不减广大.NET开发者的热情&#xff0c;仍然到场率很高。因图片还在整理中&#xff0c;暂时只发出个简单的活动资料整理分享&#xff0c;后续摄影师图片修图好后&#xff0c;再一并给到场者发送图片&#xff0c;和对活动的现场报道作更详细的图…

对弈(nim-k游戏博弈)

problem AliceAliceAlice 和 BobBobBob 又在玩游戏。 AliceAliceAlice 和 BobBobBob 在一个 1n1\times n1n 的网格图上玩游戏&#xff0c;网格图的 nnn 个格子中&#xff0c;有 kkk 个格子内被各放了一个棋子&#xff0c;其中 kkk 是一个偶数。 从左到右&#xff0c;这 kkk 个…

.Netcore 2.0 Ocelot Api网关教程(6)- 配置管理

本文介绍Ocelot中的配置管理&#xff0c;配置管理允许在Api网关运行时动态通过Http Api查看/修改当前配置。由于该功能权限很高&#xff0c;所以需要授权才能进行相关操作。有两种方式来认证&#xff0c;外部Identity Server或内部Identity Server。1、外部Identity Server修改…

最短路径(虚树+期望)

problem 给定一棵 nnn 个结点的无根树&#xff0c;每条边的边权均为 111 。 树上标记有 mmm 个互不相同的关键点&#xff0c;小 A 会在这 mmm 个点中等概率随机地选择 kkk 个不同的点放上小饼干。 你想知道&#xff0c;经过有小饼干的 kkk 个点的最短路径长度的期望是多少。…

【学习笔记】最大权闭合子图和最大密度子图(最小割的模型应用)

最大权闭合子图和最大密度子图最大权闭合子图contentexercise最大密度子图contentexerciseUpd&#xff1a;最大权闭合子图易懂证明最大权闭合子图 content 先作出以下声明&#xff1a; c(u,v):c(u,v):c(u,v): 边 (u,v)(u,v)(u,v) 的容量。 f(u,v):f(u,v):f(u,v): 边 (u,v)(u,…

Docker最全教程之使用Docker搭建Java开发环境(十八)

前言Java是一门面向对象的优秀编程语言&#xff0c;市场占有率极高&#xff0c;但是在容器化实践过程中&#xff0c;发现官方支持并不友好&#xff0c;同时与其他编程语言的基础镜像相比&#xff08;具体见各语言镜像比较&#xff09;&#xff0c;确实是非常臃肿。本篇仅作探索…

AT2705 [AGC019F] Yes or No(组合数学)

解析 Atcoder的题超小的码量总让人做不出来的时候感到很不甘心… 但这题确实挺难的&#xff0c;主要还是魔术一样的奇淫技巧。 大力推式子那个阴间方法我直接选择弃疗。 一个很显然的结论是&#xff1a;肯定回答当前剩的比较多的选项。 pia一张洛谷的图&#xff1a; &#…

ASP.NET Core 项目简单实现身份验证及鉴权

环境VS 2017ASP.NET Core 2.2目标以相对简单优雅的方式实现用户身份验证和鉴权&#xff0c;解决以下两个问题&#xff1a;无状态的身份验证服务&#xff0c;使用请求头附加访问令牌&#xff0c;几乎适用于手机、网页、桌面应用等所有客户端基于功能点的权限访问控制&#xff0c…

ML.NET 发布0.11版本:.NET中的机器学习,为TensorFlow和ONNX添加了新功能

微软发布了其最新版本的机器学习框架&#xff1a;ML.NET 0.11带来了新功能和突破性变化。新版本的机器学习开源框架为TensorFlow和ONNX添加了新功能&#xff0c;但也包括一些重大变化, 这也是发布RC版本之前的最后一个预览版&#xff0c;这个月底将发布0.12版本&#xff0c;也就…

如何使用AWS和Azure的配置存储服务保存读取配置

原文&#xff1a;Want to yank configuration values from your .NET Core apps? 作者&#xff1a;pauljwheeler译文&#xff1a;https://www.cnblogs.com/lwqlun/p/10508748.html译者&#xff1a;Lamond Lu示例源代码&#xff1a;https://github.com/lamondlu/LoadConfigurat…

Meaningless Sequence Gym - 102832D

Meaningless Sequence Gym - 102832D 题意&#xff1a; 给你n和c&#xff0c;an的公式如下图 让你求a0…an的和&#xff0c;mod 1e97 题解&#xff1a; 训练时推了好一阵子才和队友推出 我看网上正解为&#xff1a; 一个数的大小与它的二进制表示中的1的个数有关 ac(二进制…

【.NET Core项目实战-统一认证平台】第十六章 网关篇-Ocelot集成RPC服务

一、什么是RPCRPC是“远程调用&#xff08;Remote Procedure Call&#xff09;”的一个名称的缩写&#xff0c;并不是任何规范化的协议&#xff0c;也不是大众都认知的协议标准&#xff0c;我们更多时候使用时都是创建的自定义化&#xff08;例如Socket&#xff0c;Netty&#…

.net Core2.2 WebApi通过OAuth2.0实现微信登录

前言微信相关配置请参考 微信公众平台 的这篇文章。注意授权回调域名一定要修改正确。微信网页授权是通过OAuth2.0机制实现的&#xff0c;所以我们可以使用 https://github.com/china-live/QQConnect 这个开源项目提供的中间件来实现微信第三方登录的流程。开发流程1、新建一个…

Nginx优化(重点)与防盗链(新版)

Nginx优化(重点)与防盗链 Nginx优化(重点)与防盗链一、隐藏Nginx版本号1、修改配置文件2、修改源代码 二、修改Nginx用户与组1、编译安装时指定用户与组2、修改配置文件指定用户与组 三、配置Nginx网页的缓存时间四、实现Nginx的日志切割1、data的用法2、编写脚本进行日志切割的…

CodeForces730E Award Ceremony(拓扑排序+结论)

CF730E. Award Ceremonyproblemsolutioncodeproblem 题目链接 题目大意&#xff1a; 给出 nnn 个队封榜时的榜单 aia_iai​ 和揭榜时的变化情况 did_idi​。 揭榜时&#xff0c;这个队的名次会变化 tit_iti​。 注意在别的队揭榜时&#xff0c;自己队的排名也是动态变化的…

.Netcore 2.0 Ocelot Api网关教程(番外篇)- Ocelot v13.x升级

由于Ocelot系列博客好久没更新&#xff08;差不多有10个月的时间了&#xff09;&#xff0c;在此先说声抱歉&#xff0c;Ocelot系列会继续更新下去。在写上一篇配置管理的时候发现官方文档已经和以前的不一样&#xff0c;而Ocelot也从5.0版本更新到了13.x版本&#xff0c;进行了…

CF765F Souvenirs(暴力、线段树)

解析 比较神奇的一道题。 考虑一个常规套路&#xff1a;把询问离线&#xff0c;移动右端点&#xff0c;维护左端点答案。 考虑暴力维护&#xff0c;对于当前的 aixa_ixai​x&#xff0c;左侧如图所示的这两条线上的点都可以产生新的可能答案。 容易构造使得单次产生的新点是…

Hard Disk Drive HDU - 4788

Hard Disk Drive HDU - 4788 题意&#xff1a; 通常制造商认为1“kilo”等于1000&#xff0c;但操作系统会认为是1024。 因此&#xff0c;当你购买了一个100MB的硬盘&#xff0c;电脑却只显示大约有95MB&#xff0c;这缺失了大约5MB。 对于硬盘的大小&#xff0c;有多种单位描…

ASP.NET Core 沉思录 - 环境的思考

我的博客换新家啦&#xff0c;新的地址为&#xff1a;https://clrdaily.com :-D今天我们来一起思考一下如何在不同的环境应用不同的配置。这里的配置不仅仅指 IConfiguration 还包含 IWebHostBuilder 的创建过程和 Startup 的初始化过程。0 太长不读环境造成的差异在架构中基本…

深度:从 Office 365 新图标来看微软背后的设计新理念

开始表演请关注我的公众号“寒树Office”来获取一些新鲜而有趣的新闻与知识&#xff0c;最近又有两家俱乐部上线了&#xff08;东莞与长沙&#xff09;&#xff0c;俱乐部的活动告一段落&#xff0c;接下来的日子里我将持续与大家分享 Office 365 的精彩内容&#xff0c;这次很…