AT2000 [AGC002F] Leftmost Ball(dp、组合数学)

解析

如果之前有些卡住的题可以说是奇淫技巧的话,这道题的思路只能说太经典了。
感觉其实也就是紫的难度吧,没做出来有些可惜。
还是有写畏黑情绪,见到黑题本能的感觉做不出来。

首先是一个比较自然的题意转化:有 k-1 个 1-n 的球, n 个 0 号球,要求任意前缀 0 号球的数量不少于 1-n 的球的种类数。
然后就不会了
关键就是给每种合法方式找到一种唯一的统计方式。

首先一个常见做法是先钦定一个颜色的出现次序,最后答案乘阶乘即可。
fi,jf_{i,j}fi,j 表示放了 i 个白球,j 种球的方案数。
然后,考虑下一个球的颜色,如果是白色,直接填上即可。如果不是白色,我们就同时确定这种颜色剩余的 k-2 个球的位置,这样以后就不用考虑了。由于这些球的位置任意,所以我们刚才的“下一个球”其实是指“下一个空位置的球”。
然后不难发现对于任意合法方案,这样的转移都会且只会统计一次。

时间复杂度 O(n2)O(n^2)O(n2)
k=1k=1k=1 的时候组合数会出现 -1,直接特判即可。

代码

//luogu
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define LL __int128
#define ull unsigned long long
#define debug(...) fprintf(stderr,__VA_ARGS__)
#define ok debug("OK\n")
using namespace std;const int N=2050;
const int mod=1e9+7;
inline ll read(){ll x(0),f(1);char c=getchar();while(!isdigit(c)) {if(c=='-')f=-1;c=getchar();}while(isdigit(c)) {x=(x<<1)+(x<<3)+c-'0';c=getchar();}return x*f;
}inline ll ksm(ll x,ll k){ll res(1);while(k){if(k&1) res=res*x%mod;x=x*x%mod;k>>=1;}return res;
}
int n,k;ll jc[N*N],ni[N*N];
void init(int n){jc[0]=1;for(int i=1;i<=n;i++) jc[i]=jc[i-1]*i%mod;ni[n]=ksm(jc[n],mod-2);for(int i=n-1;i>=0;i--) ni[i]=ni[i+1]*(i+1)%mod;return;
}
inline ll C(int n,int m){return jc[n]*ni[m]%mod*ni[n-m]%mod;
}
ll f[N][N];signed main(){#ifndef ONLINE_JUDGEfreopen("a.in","r",stdin);freopen("a.out","w",stdout);#endifn=read();k=read();if(k==1){puts("1");return 0;}init(n*k);for(int i=1;i<=n;i++){f[i][0]=1;for(int j=1;j<=i;j++){f[i][j]=(f[i-1][j]+f[i][j-1]*C(n*k-i-(j-1)*(k-1)-1,k-2))%mod;}}printf("%lld\n",f[n][n]*jc[n]%mod);return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/316808.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CF 1529E. Trees of Tranquillity

CF 1529E. Trees of Tranquillity 文章目录题意&#xff1a;题解&#xff1a;代码&#xff1a;线段树代码&#xff1a;利用set实现题意&#xff1a; 有A1&#xff0c;A2两棵树&#xff0c;根是1&#xff0c;编号都是1~n&#xff0c;先制作图A3&#xff0c;如果两个点的x和y同时…

【学习笔记】最大权闭合子图和最大密度子图(最小割的模型应用)

最大权闭合子图和最大密度子图最大权闭合子图contentexercise最大密度子图contentexerciseUpd&#xff1a;最大权闭合子图易懂证明最大权闭合子图 content 先作出以下声明&#xff1a; c(u,v):c(u,v):c(u,v): 边 (u,v)(u,v)(u,v) 的容量。 f(u,v):f(u,v):f(u,v): 边 (u,v)(u,…

Docker最全教程之使用Docker搭建Java开发环境(十八)

前言Java是一门面向对象的优秀编程语言&#xff0c;市场占有率极高&#xff0c;但是在容器化实践过程中&#xff0c;发现官方支持并不友好&#xff0c;同时与其他编程语言的基础镜像相比&#xff08;具体见各语言镜像比较&#xff09;&#xff0c;确实是非常臃肿。本篇仅作探索…

AT2705 [AGC019F] Yes or No(组合数学)

解析 Atcoder的题超小的码量总让人做不出来的时候感到很不甘心… 但这题确实挺难的&#xff0c;主要还是魔术一样的奇淫技巧。 大力推式子那个阴间方法我直接选择弃疗。 一个很显然的结论是&#xff1a;肯定回答当前剩的比较多的选项。 pia一张洛谷的图&#xff1a; &#…

Coding Contest HDU - 5988

Coding Contest HDU - 5988 题意&#xff1a; 有n个点&#xff0c;m个边&#xff0c;每个点有人数和食物数&#xff0c;每个人都要吃一份食物&#xff0c;如果该点的食物不够&#xff0c;他们就要去其他点&#xff0c;每个边最多只能走c次&#xff0c;每次有人走一条路&#…

ASP.NET Core 项目简单实现身份验证及鉴权

环境VS 2017ASP.NET Core 2.2目标以相对简单优雅的方式实现用户身份验证和鉴权&#xff0c;解决以下两个问题&#xff1a;无状态的身份验证服务&#xff0c;使用请求头附加访问令牌&#xff0c;几乎适用于手机、网页、桌面应用等所有客户端基于功能点的权限访问控制&#xff0c…

AT4352 [ARC101C] Ribbons on Tree

解析 其实想到了断边按连通块容斥的做法。 但不知道为啥觉得没前途弃了… 悲。 考虑容斥&#xff0c;设 f[x][i] 表示 x 子树内与 x 所连的联通块有 i 个节点的方案数&#xff0c;第三维朴素是记录连通块个数&#xff0c;但其实只需要记一个 0/1 表示奇偶性即可。 然后题解奥…

【无码专区7】括号序列(思维)

因为只有std&#xff0c;没有自我实现&#xff0c;所以是无码专区 主要是为了训练思维能力 solution才是dls正解&#xff0c;但是因为只有潦草几句&#xff0c;所以大部分会有我自己基于正解上面的算法实现过程&#xff0c;可能选择的算法跟std中dls的实现不太一样。 std可能…

2016ICPC青岛

2016ICPC青岛 题号题目难度知识点ARelic Discovery签到贪心BPocket Cube快铜大模拟CPocky签到数论&#xff0c;推公式DLucky CoinsEFibonacciFLambda CalculusGCoding Contest银牌题网络流HPatternITravel BrochureJCliquesKFinding HotelsLTower AttackMGenerator and Monito…

ML.NET 发布0.11版本:.NET中的机器学习,为TensorFlow和ONNX添加了新功能

微软发布了其最新版本的机器学习框架&#xff1a;ML.NET 0.11带来了新功能和突破性变化。新版本的机器学习开源框架为TensorFlow和ONNX添加了新功能&#xff0c;但也包括一些重大变化, 这也是发布RC版本之前的最后一个预览版&#xff0c;这个月底将发布0.12版本&#xff0c;也就…

CF1267G Game Relics(期望、背包)

解析 有些遗憾的一个题。 几乎已经做出来了&#xff0c;但最后把买的代价看成平均数确实没有想到。 还有那个背包我觉得直接做会炸精度&#xff0c;就开始各种玩泥巴。 悲。 比较显然的结论是最优解必然是先抽抽抽然后再买买买。 剩 i 个宝物的时候抽出一个新宝物的期望代价比…

铺地毯(矩形的交+前后缀矩形交)

铺地毯problemsolutioncodeproblem 给定矩阵的长宽 P,QP,QP,Q&#xff0c;矩阵从下往上从左往后编号增加&#xff0c;(0,0)∼(P,Q)(0,0)\sim (P,Q)(0,0)∼(P,Q)。 给定 nnn 张长宽平行于坐标轴的矩形地毯&#xff0c;左下角和右上角的坐标。 求被至少 n−1n-1n−1 张地毯覆盖…

AT2366 [AGC012F] Prefix Median(dp)

解析 确实精妙的一道题。 卡在最后一步dp转化上了&#xff0c;这个转化也确实是本题的难点。 当一个计数难以下手的时候&#xff0c;先想想如何判合法&#xff1f; 不难想到一个较为显然的贪心&#xff1a;假如和上一个一样&#xff0c;就填一个当前的最大值和最小值&#xf…

2020CCPC长春

2020CCPC长春 题号题目难度知识点AKrypton签到01背包BThe Tortoise and the HareCQuantum GeometryDMeaningless Sequence签到推公式EDefense of Valor LeagueFStrange Memory树上启发式合并GMonkey’s KeyboardHCombination LockIKawaii CourierJAbstract PaintingKRagdollLC…

如何使用AWS和Azure的配置存储服务保存读取配置

原文&#xff1a;Want to yank configuration values from your .NET Core apps? 作者&#xff1a;pauljwheeler译文&#xff1a;https://www.cnblogs.com/lwqlun/p/10508748.html译者&#xff1a;Lamond Lu示例源代码&#xff1a;https://github.com/lamondlu/LoadConfigurat…

基站建设(三元环计数+根号分治 / bitset)

基站建设problemsolutioncodeproblem 给定 nnn 个地点&#xff0c;以及每个地点的可靠度 RiR_iRi​。 有 mmm 条光纤架&#xff0c;每一条连接两个不同的地点&#xff0c;且是双向的。 测试基站由 444 个信号塔&#xff0c;有 222 个主信号塔和 222 个副信号塔。 要求主信号…

CF1060F Shrinking Tree(期望、树形dp)

解析 神题。 把每个节点提到根 rt 单独考虑。 设 dpi,jdp_{i,j}dpi,j​ 表示当 rt 进入 i 时子树内还有 j 条边未合并的方案的期望之和&#xff0c;gi,jg_{i,j}gi,j​ 表示当 rt 进入 i 的父亲时 i 的子树内&#xff08;包括连向父亲的边&#xff09;还有 j 条边未合并的方案…

Meaningless Sequence Gym - 102832D

Meaningless Sequence Gym - 102832D 题意&#xff1a; 给你n和c&#xff0c;an的公式如下图 让你求a0…an的和&#xff0c;mod 1e97 题解&#xff1a; 训练时推了好一阵子才和队友推出 我看网上正解为&#xff1a; 一个数的大小与它的二进制表示中的1的个数有关 ac(二进制…

【.NET Core项目实战-统一认证平台】第十六章 网关篇-Ocelot集成RPC服务

一、什么是RPCRPC是“远程调用&#xff08;Remote Procedure Call&#xff09;”的一个名称的缩写&#xff0c;并不是任何规范化的协议&#xff0c;也不是大众都认知的协议标准&#xff0c;我们更多时候使用时都是创建的自定义化&#xff08;例如Socket&#xff0c;Netty&#…

【学习笔记】无向图、有向图的三元环、四元环计数问题(根号分支+bitset)

三元环计数和四元环计数问题无向图三元环计数问题根号分治bitset无向图四元环计数问题有向图三四元环计数问题无向图三元环计数问题 根号分治 记 di:id_i:idi​:i 在原图中的度数。 按照以下规则改写无向图为有向图&#xff1a; 对于一条边 u,vu,vu,v。 如果两点度数不同&a…