https://ac.nowcoder.com/acm/contest/11253/G
上面出题人给的题解:
思路基本差不多,这里主要说一下合并小区间的dp,
dp[i][j]代表前i个分成j组最大的时间max
我们首先将区间排好序,如果满足a[k]>b[i] ,则有
j都是由j-1转移过来的,所以可以用滚动数组优化一维空间(不优化也能过吧);
每次更新的时候,我们都要寻找所以a[k]>b[i]值,因为b[i]其实是排序好的,我们可以用单调队列来优化,然后对于每次转移我们需要找最大的转移,然后根据转移公式,我们发现dp[i-1][j-1]+b[i]更大的那个是更优的,那我们可以根据单调性可以用队尾弹出一下没意愿存的点(如果前面的点dp[i-1][j-1]+b[i]比后面的点小,那就是没意义的)。
代码有注释
#include <iostream>
#include <cstdio>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <string>
#include <cstring>
#include <map>
#include <stack>
#include <set>
#include <cstdlib>
#include <list>
#define INF 0x3f3f3f3f3f3f3f3f
#define inf 0x3f3f3f3f
#define FILL(a,b) (memset(a,b,sizeof(a)))
#define lson rt<<1
#define rson rt<<1|1
#define lowbit(a) ((a)&-(a))
#define ios std::ios::sync_with_stdio(false);std::cin.tie(0);std::cout.tie(0);
#define fi first
#define sc second
#define pb push_back
#define endl '\n'
#define all(x) (x).begin(),(x).end()
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<ll,ll> pii;
int dx[8]= {-1,1,0,0,1,1,-1,-1},dy[8]= {0,0,1,-1,-1,1,-1,1};
const ll mod=998244353;
const ll N =1e6+10;
const ll M =250000;
const double eps = 1e-4;
//const double pi=acos(-1);
ll re(){ll x;scanf("%lld",&x);return x;}
ll qk(ll a,ll b){ll ans=1;while(b){if(b&1) ans=ans*a%mod;a=a*a%mod;b/=2;}return ans;}
inline int read(){int sgn = 1; int sum = 0;char ch = getchar();while (ch < '0' || ch > '9') {if(ch == '-') sgn = -sgn;ch = getchar();}while ('0' <= ch && ch <= '9') {sum = sum*10+(ch-'0');ch = getchar();}return sgn*sum;}ll n,k;
ll dp[2][5500];
pii a[5500];
ll sum[5500];
void sovle(){cin>>n>>k;for(ll i=1;i<=n;i++) cin>>a[i].fi>>a[i].sc;sort(a+1,a+1+n);vector<ll> big;ll cnt=0;vector<pii> b;for(ll i=1;i<=n;i++){while(b.size()&&b.back().sc>=a[i].sc){//处理大区间big.pb(b.back().sc-b.back().fi);b.pop_back();}b.pb(a[i]);}for(pii v:b){//小区间a[++cnt]=v;}sort(all(big),greater<ll>());for(ll i=0;i<big.size();i++){//大区间前缀和sum[i+1]=sum[i]+big[i];}ll m=big.size();n=cnt;FILL(dp,-inf);dp[0][0]=0;//初始化ll ans=0;for(ll i=1;i<=k;i++){deque<ll> q;FILL(dp[1],-inf);for(ll j=1;j<=n;j++){while(q.size()&&dp[0][q.back()-1]+a[q.back()].sc<dp[0][j-1]+a[j].sc){q.pop_back();}//单调队列优化q.push_back(j);while(q.size()&&a[q[0]].sc<=a[j].fi) q.pop_front();//单调队列优化dp[1][j]=dp[0][q[0]-1]+a[q[0]].sc-a[j].fi;//状态转移}swap(dp[0],dp[1]);//优化空间if(m>=k-i){ans=max(ans,dp[0][n]+sum[k-i]);}}cout<<ans<<endl;
}int main()
{iosint t=1;while(t--){sovle();}return 0;
}