传送门
文章目录
- 题意:
- 思路:
题意:
给你n,dn,dn,d,让你构造有nnn个点的二叉树,他们每个节点深度和为ddd。
n,d≤3000n,d\le 3000n,d≤3000.
思路:
先考虑不能构造出来的情况,设sumsumsum为最小的深度和,那么sum>dsum>dsum>d或n∗(n−1)2<d\frac{n*(n-1)}{2}<d2n∗(n−1)<d的时候无解。
考虑构造的深度最小的情况,我们让每个点iii的父亲等于⌊i2⌋\left \lfloor \frac{i}{2} \right \rfloor⌊2i⌋即可,这样深度最小,我们先让d=d−sumd=d-sumd=d−sum。记最长链的最下端的编号为ppp,那么当我们depth[p]−depth[i]+1<ddepth[p]-depth[i]+1<ddepth[p]−depth[i]+1<d的时候,我们直接让iii跑到ppp的下面,让后将ppp更新为iii就好了。如果depth[p]−depth[i]+1>=ddepth[p]-depth[i]+1>=ddepth[p]−depth[i]+1>=d,那么说明如果跳到这个点深度就多了,那么我们就向上找ppp的父亲,每跳一次,就让d−−d--d−−,直到ddd为000,将iii放到跳到的点的下面就好了。
// Problem: E. Construct the Binary Tree
// Contest: Codeforces - Codeforces Round #624 (Div. 3)
// URL: https://codeforces.com/contest/1311/problem/E
// Memory Limit: 256 MB
// Time Limit: 2000 ms
//
// Powered by CP Editor (https://cpeditor.org)//#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,avx,avx2,popcnt,tune=native")
//#pragma GCC optimize(2)
#include<cstdio>
#include<iostream>
#include<string>
#include<cstring>
#include<map>
#include<cmath>
#include<cctype>
#include<vector>
#include<set>
#include<queue>
#include<algorithm>
#include<sstream>
#include<ctime>
#include<cstdlib>
#define X first
#define Y second
#define L (u<<1)
#define R (u<<1|1)
#define pb push_back
#define mk make_pair
#define Mid (tr[u].l+tr[u].r>>1)
#define Len(u) (tr[u].r-tr[u].l+1)
#define random(a,b) ((a)+rand()%((b)-(a)+1))
#define db puts("---")
using namespace std;//void rd_cre() { freopen("d://dp//data.txt","w",stdout); srand(time(NULL)); }
//void rd_ac() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//AC.txt","w",stdout); }
//void rd_wa() { freopen("d://dp//data.txt","r",stdin); freopen("d://dp//WA.txt","w",stdout); }typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> PII;const int N=1000010,mod=1e9+7,INF=0x3f3f3f3f;
const double eps=1e-6;int n,d;
int depth[N],fa[N];int main()
{
// ios::sync_with_stdio(false);
// cin.tie(0);int _; scanf("%d",&_);while(_--){scanf("%d%d",&n,&d);int sum=0; depth[0]=-1; int root=1;for(int i=1;i<=n;i++) {if((i&(i-1))==0) root=i;depth[i]=depth[i/2]+1,fa[i]=i/2,sum+=depth[i];}if(sum>d||d>n*(n-1)/2) { puts("NO"); continue; }d-=sum;if(!d){puts("YES");for(int i=2;i<=n;i++) printf("%d ",fa[i]);puts("");continue;}for(int i=n;i>=1;i--){if((i&(i-1))==0) continue;int cnt=depth[root]-depth[i]+1;if(cnt<d){d-=cnt;depth[i]=depth[root]+1;fa[i]=root;root=i;}else {d=cnt-d;while(d&&root!=1) root=fa[root],d--;fa[i]=root; depth[i]=depth[root]+1;puts("YES");for(int i=2;i<=n;i++) printf("%d ",fa[i]);puts("");break;}} }return 0;
}
/**/