图像坐标:我想和世界坐标谈谈(A) 【计算机视觉学习笔记--双目视觉几何框架系列】

 玉米竭力用轻松具体的描述来讲述双目三维重建中的一些数学问题。希望这样的方式让大家以一个轻松的心态阅读玉米的《计算机视觉学习笔记》双目视觉数学架构系列博客。这个系列博客旨在捋顺一下已标定的双目视觉中的数学主线。数学推导是有着几分枯燥的,但奇妙的计算机视觉世界是建立在严密的数学架构之上的。所以对数学框架的理解是理解双目视觉的必由之路。不过请大家放心,接下来玉米会以尽量有趣,尽量更接地气儿的方式,阐释一下自己对双目视觉数学或者说是投影几何的理解。

       先来张《计算机视觉:算法与应用》中的3D重建示例图镇楼!


         好吧,现在言归正传,来看看几何学上世界是怎样投影进摄相机里的吧!接下来让我们来看一下本系列博客的第一“搏”:


图像坐标:我想和世界坐标谈谈(A)

         首先,我先解释一下这个题目吧。题目的字面意义是说:图像坐标系想和世界坐标系谈谈。这里面包含着两个问题:

         A、谈话对象:视觉系统的三大坐标系:世界坐标系,摄像机坐标系和图像坐标系。这是玉米在本文《我想和世界坐标谈谈                       (A)》中想要和大家分享的内容。其中主要包含:三大坐标系的位置、作用和应用场景。

         B、谈话方式:两个不同的坐标系之间该如何沟通呢?玉米将在《我想和世界坐标谈谈(B)》中和大家分享一下刚体变换和透视                 投影变换。连起两个坐标系之间这不在一个参考系的“世界上最远的距离”。

                 好吧,下面让我们来揭开三大坐标系的庐山真面目。


 

         上图是三个坐标的示意简图,通过它大家可以对三个坐标有一个直观的认识。下面来看看三个坐标系的骨子里藏了什么。

         世界坐标系(XW,YW,ZW):其是目标物体位置的参考系。除了无穷远,世界坐标可以根据运算方便与否自由放置。在双目视觉中世界坐标系主要有三个用途:1、标定时确定标定物的位置2、作为双目视觉的系统参考系,给出两个摄像机相对世界坐标系的关系,从而求出相机之间的相对关系3、作为重建得到三维坐标的容器,盛放重建后的物体的三维坐标。世界坐标系是将看见中物体纳入运算的第一站。

        摄像机坐标系(XC,YC,ZC):其是摄像机站在自己角度上衡量的物体的坐标系。摄像机坐标系的原点在摄像机的光心上,z轴与摄像机光轴平行。它是与拍摄物体发生联系的桥头堡,世界坐标系下的物体需先经历刚体变化转到摄像机坐标系,然后在和图像坐标系发生关系。它是图像坐标与世界坐标之间发生关系的纽带,沟通了世界上最远的距离。哈哈

         图像坐标系(x,y)/(u,v) :其是以摄像机拍摄的二维照片为基准建立的坐标系。用于指定物体在照片中的位置。玉米更倾向将(x,y)称为连续图像坐标或空间图像坐标,将(u,v)称为离散图像坐标系或者是像素图像坐标系(虽然这样的称呼未经考证,但更能传达二者的物理意义)。

          (x,y)坐标系的原点位于摄像机光轴与成像平面的焦点O’(u0,v0)上,单位为长度单位(米)。(u,v)坐标系的原点在图片的左上角(其实是存储器的首地址)如上图所示,单位为数量单位(个)。(x,y)主要用于表征物体从摄像机坐标系向图像坐标系的透视投影关系。而(u,v)则是实实在在的,我们能从摄像机中得到的真实信息。

(x,y)与(u,v)存在如下转换关系:


          dx代表x轴方向一个像素的宽度,dy代表y轴方向上一个像素的宽度。dx、dy为摄像机的内参数。(u0,v0)称为图像平面的主点,也是摄像机的内参数。其实相当于对x轴和y轴的离散化。其可以运用齐次坐标,将上式写成矩阵形式,如下:

                                                                                                           

      (1)式运用了齐次坐标,初学者可能会感到有些迷惑。大家会问:怎样将普通坐标转换为齐次坐标呢齐次坐标能带来什么好处呢

         玉米在这里对齐次坐标做一个通俗的解释。此处只讲怎么将普通坐标改写为齐次坐标及为什么引入齐次坐标。这里只做一个通俗但不太严谨的表述。力求简单明了。针对齐次坐标的严谨的纯数学推导,可参见“周兴和版的《高等几何》---1.3拓广平面上的齐次坐标”。玉米曾详细读过《高等几何》这本书,但觉得离计算机视觉有点远,是讲纯数学的投影关系的,较为生涩难懂。

        齐次坐标可以理解为在原有坐标后面加一个“小尾巴”。将普通坐标转换为齐次坐标,通常就是在增加一个维度,这个维度上的数值为1。如图像坐标系(u,v)转换为(u,v,1)一样。对于无穷远点,小尾巴为0。注意,给零向量增加小尾巴,数学上无意义。

那么,为什么计算机视觉在坐标运算时要加上这个“小尾巴”呢?

        玉米看来有两点原因

         1、 将投影平面扩展到无穷远点。如对消隐点(vanishing point)的描述。

          2、 使得计算更加规整

         如式(1)如果用普通坐标来表达的话,会是下面的样子:

          这样的运算形式会给后与运算带来一定的麻烦,所以齐次坐标是一个更好的选择。

          齐次坐标还有一个重要的性质,伸缩不变性。即:设齐次坐标M,则αM=M。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/255218.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

img

转载于:https://www.cnblogs.com/SoulCode/p/6508720.html

图像坐标:我想和世界坐标谈谈(B)

二、图像坐标:我想和世界坐标谈谈(B) 玉米将在这篇博文中,对图像坐标与世界坐标的这场对话中涉及的第二个问题:谈话方式,进行总结。世界坐标是怎样变换进摄像机,投影成图像坐标的呢? 玉米做了一个简单的图示…

【Android】Fragment的简单笔记

被虐了,做某公司笔试时,发现自己连个Fragment的生命周期都写不详细。平时敲代码,有开发工具的便利,有网上各大神的文章,就算忘了也很容易的可以查到,但当要自己不借助外界,却发现自己似乎对该知…

三、致敬“张正友标定”

三、致敬“张正友标定” 此处“张正友标定”又称“张氏标定”,是指张正友教授于1998年提出的单平面棋盘格的摄像机标定方法。张氏标定法已经作为工具箱或封装好的函数被广泛应用。张氏标定的原文为“A Flexible New Technique forCamera Calibration”。此文中所提到…

Using KernelShark to analyze the real-time scheduler【转】

转自:https://lwn.net/Articles/425583/ This article brought to you by LWN subscribers Subscribers to LWN.net made this article — and everything that surrounds it — possible. If you appreciate our content, please buy a subscription and make the …

3、时间和随机数

一、时间 1.1 使用Calendar/[ˈkləndɚ]/类获取时间 1.1.1 常用方法 (1)public static Calendar getInstance(): 使用默认时区和语言环境获取一个基于当前时间的Calendar对象。 (2)public int get(int field) 返回给定日历字段表示的日历部分的数字…

哥尼斯堡的“七桥问题” (欧拉回路,并查集)

哥尼斯堡的“七桥问题” (25分) 哥尼斯堡是位于普累格河上的一座城市,它包含两个岛屿及连接它们的七座桥,如下图所示。 可否走过这样的七座桥,而且每桥只走过一次?瑞士数学家欧拉(Leonhard Euler,1707—1783)最终解决…

无人驾驶汽车之争本田为何未战先败

摘要 : 本田汽车的研发部门对于汽车虽然理解深刻,但从整体而言,本田的造车理念还停留在上个时代,在未来的无人驾驶竞争中,本田已经有未战先啊败的苗头。 百度百家The BIG Talk硅谷站连续5小时的高密度头脑风暴,果然让人…

理解git结构与简单操作(四)合并分支的方法与策略

接上节,此时的dev分支与master分支的进度就不一样了,所以需要将dev分支与master分支同步。这里需要的就是合并分支的操作,大家应该都知道用git merge或者git rebase。 git merge merge,即「合并」。 fast-forward 当出现我们上面图…

摄像机标定

利用摄像机所拍摄到的图像来还原空间中的物体。在这里,不妨假设摄像机所拍摄到的图像与三维空间中的物体之间存在以下一种简单的线性关系:[像]M[物],这里,矩阵M可以看成是摄像机成像的几何模型。 M中的参数就是摄像机参数。通常,这…

Linux下Tomcat重新启动

在Linux系统下,重启Tomcat使用命令操作的! 首先,进入Tomcat下的bin目录 cd /usr/local/tomcat/bin 使用Tomcat关闭命令 ./shutdown.sh 查看Tomcat是否以关闭 ps -ef|grep java 如果显示以下相似信息,说明Tomcat还没有关闭 root …

大数据和人工智能的关系是什么?

何为大数据?何为人工智能? 大数据,百度百科上是这么定义的,指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率…

张正友标定法 【计算机视觉学习笔记--双目视觉几何框架系列】

三、致敬“张正友标定” 此处“张正友标定”又称“张氏标定”,是指张正友教授于1998年提出的单平面棋盘格的摄像机标定方法。张氏标定法已经作为工具箱或封装好的函数被广泛应用。张氏标定的原文为“A Flexible New Technique forCamera Calibration”。此文中所提到…

软工网络15个人阅读作业2——提问题

提出问题 快速通读教材《构建之法》,并参照提问模板,提出5个问题。 问题一: p83有一段话: 两人在一起合作,自然会出现不同意见,每个人都有自己的想法,在两个人平等合作的情况下,不存…

绝对路径VS相对路径

绝对路径:不必赘述,就是从盘符开始写直到找到你所需要的文件为止,把所有的目录写完整即可。但是在做网站的时候绝对不推荐用绝对路径,因为不可能服务器中的路径和在做设计时候所用的电脑的路径一致,也不可能说在服务器…

四、极大似然参数估计

四、极大似然参数估计 此篇博文,玉米将和大家分享一下“张氏标定”除几何推导外的另外一大精髓:参数估计。 张教授在大作“A Flexible New Technique for Camera Calibration”中的原话如下:” The above solution is obtained through minim…

xtrabackup安装使用

2019独角兽企业重金招聘Python工程师标准>>> 【MySQL】xtrabackup安装使用 拾荒者charley 关注 2018.03.19 09:19 字数 186 阅读 17评论 0喜欢 0 前言:说到MySQL备份,主要采用的方法无非就是mysqldump/mysqldumper以及我们今天要说的热备利器…

2017/3/10 morning

转载于:https://www.cnblogs.com/bgd140206325/p/6529497.html

六、张正友标定法小结

六、张正友标定法小结 这一博文,是玉米后补上的。因为觉得前面用了三篇博文来描述张氏标定法,略显散乱。在这里总结一下,使条理清晰一点。另外关于张氏标定所得参数也还有两点需要澄清。下面这个总结,其实也是在“A Flexible New …

SqlServer图形数据库初体验

SQL Server2017新增了一个新功能叫做图形数据库。图形指的拓扑图形,是一些Node表和Edge表的合集,Node对应关系数据库中的实体,比如一个人、一个岗位等,Edge表指示Node之前的关系,比如张三在经理岗位。图形表比较适合用…