RabbitMQ如何保证可靠

0. RabbitMQ不可靠原因

在这里插入图片描述

消息从生产者到消费者的每一步都可能导致消息丢失:

  • 发送消息时丢失:
    • 生产者发送消息时连接MQ失败
    • 生产者发送消息到达MQ后未找到Exchange
    • 生产者发送消息到达MQ的Exchange后,未找到合适的Queue
    • 消息到达MQ后,处理消息的进程发生异常
  • MQ导致消息丢失:
    • 消息到达MQ,保存到队列后,尚未消费就突然宕机
  • 消费者处理消息时:
    • 消息接收后尚未处理突然宕机
    • 消息接收后处理过程中抛出异常

1. 发送者的可靠性

1.1 生产者重试机制

解决生产者发送消息时,出现了网络故障,导致与MQ的连接中断。

spring:rabbitmq:connection-timeout: 1s # 设置MQ的连接超时时间template:retry:enabled: true # 开启超时重试机制initial-interval: 1000ms # 失败后的初始等待时间multiplier: 1 # 失败后下次的等待时长倍数,下次等待时长 = initial-interval * multipliermax-attempts: 3 # 最大重试次数

1.2 生产者确认机制

  • 当消息投递到MQ,但是路由失败时,通过Publisher Return返回异常信息,同时返回ack的确认信息,代表投递成功
  • 临时消息投递到了MQ,并且入队成功,返回ACK,告知投递成功
  • 持久消息投递到了MQ,并且入队完成持久化,返回ACK ,告知投递成功
  • 其它情况都会返回NACK,告知投递失败

其中ack和nack属于Publisher Confirm机制,ack是投递成功;nack是投递失败。而return则属于Publisher Return机制。
默认两种机制都是关闭状态,需要通过配置文件来开启。

开启Confirm和Return

spring:rabbitmq:publisher-confirm-type: correlated # 开启publisher confirm机制,并设置confirm类型publisher-returns: true # 开启publisher return机制

这里publisher-confirm-type有三种模式可选:

  • none:关闭confirm机制
  • simple:同步阻塞等待MQ的回执
  • correlated:MQ异步回调返回回执

一般使用correlated,回调机制。

定义ReturnCallback

@Slf4j
@AllArgsConstructor
@Configuration
public class MqConfig {private final RabbitTemplate rabbitTemplate;@PostConstructpublic void init(){rabbitTemplate.setReturnsCallback(new RabbitTemplate.ReturnsCallback() {@Overridepublic void returnedMessage(ReturnedMessage returned) {log.error("触发return callback,");log.debug("exchange: {}", returned.getExchange());log.debug("routingKey: {}", returned.getRoutingKey());log.debug("message: {}", returned.getMessage());log.debug("replyCode: {}", returned.getReplyCode());log.debug("replyText: {}", returned.getReplyText());}});}
}

定义ConfirmCallback

@Test
void testPublisherConfirm() {// 1.创建CorrelationDataCorrelationData cd = new CorrelationData();// 2.给Future添加ConfirmCallbackcd.getFuture().addCallback(new ListenableFutureCallback<CorrelationData.Confirm>() {@Overridepublic void onFailure(Throwable ex) {// 2.1.Future发生异常时的处理逻辑,基本不会触发log.error("send message fail", ex);}@Overridepublic void onSuccess(CorrelationData.Confirm result) {// 2.2.Future接收到回执的处理逻辑,参数中的result就是回执内容if(result.isAck()){ // result.isAck(),boolean类型,true代表ack回执,false 代表 nack回执log.debug("发送消息成功,收到 ack!");}else{ // result.getReason(),String类型,返回nack时的异常描述log.error("发送消息失败,收到 nack, reason : {}", result.getReason());}}});// 3.发送消息rabbitTemplate.convertAndSend("harry.direct", "q", "hello", cd);
}

开启生产者确认比较消耗MQ性能,一般不建议开启。而且触发确认的几种情况:

  • 路由失败:一般是因为RoutingKey错误导致,往往是编程导致
  • 交换机名称错误:同样是编程错误导致
  • MQ内部故障:这种需要处理,但概率往往较低。因此只有对消息可靠性要求非常高的业务才需要开启,而且仅仅需要开启ConfirmCallback处理nack就可以了。

2. MQ的可靠性

2.1 数据持久化

为了提升性能,默认情况下MQ的数据都是在内存存储的临时数据,重启后就会消失。为了保证数据的可靠性,必须配置数据持久化,包括:

  • 交换机持久化
  • 队列持久化
  • 消息持久化
    可以在控制台界面设置。
    设置为Durable就是持久化模式,Transient就是临时模式。
    设置为Durable就是持久化模式,Transient就是临时模式。

2.2 LazyQueue

在默认情况下,RabbitMQ会将接收到的信息保存在内存中以降低消息收发的延迟。但在某些特殊情况下,这会导致消息积压,比如:

  • 消费者宕机或出现网络故障
  • 消息发送量激增,超过了消费者处理速度
  • 消费者处理业务发生阻塞

一旦出现消息堆积问题,RabbitMQ的内存占用就会越来越高,直到触发内存预警上限。此时RabbitMQ会将内存消息刷到磁盘上,这个行为成为PageOut.
PageOut会耗费一段时间,并且会阻塞队列进程。因此在这个过程中RabbitMQ不会再处理新的消息,生产者的所有请求都会被阻塞。

为了解决这个问题,从RabbitMQ的3.6.0版本开始,就增加了Lazy Queues的模式,也就是惰性队列。惰性队列的特征如下:

  • 接收到消息后直接存入磁盘而非内存
  • 消费者要消费消息时才会从磁盘中读取并加载到内存(也就是懒加载)
  • 支持数百万条的消息存储

而在3.12版本之后,LazyQueue已经成为所有队列的默认格式。因此官方推荐升级MQ为3.12版本或者所有队列都设置为LazyQueue模式。

在添加队列的时候,添加x-queue-mod=lazy参数即可设置队列为Lazy模式:
代码方式

@Bean
public Queue lazyQueue(){return QueueBuilder.durable("lazy.queue").lazy() // 开启Lazy模式.build();
}
@RabbitListener(queuesToDeclare = @Queue(name = "lazy.queue",durable = "true",arguments = @Argument(name = "x-queue-mode", value = "lazy")
))
public void listenLazyQueue(String msg){log.info("接收到 lazy.queue的消息:{}", msg);
}

3. 消费者的可靠性

3.1 消费者确认机制

为了确认消费者是否成功处理消息,RabbitMQ提供了消费者确认机制(Consumer Acknowledgement)。即:当消费者处理消息结束后,应该向RabbitMQ发送一个回执,告知RabbitMQ自己消息处理状态。回执有三种可选值:

  • ack:成功处理消息,RabbitMQ从队列中删除该消息
  • nack:消息处理失败,RabbitMQ需要再次投递消息
  • reject:消息处理失败并拒绝该消息,RabbitMQ从队列中删除该消息

一般reject方式用的较少,除非是消息格式有问题,那就是开发问题了。因此大多数情况下我们需要将消息处理的代码通过try catch机制捕获,消息处理成功时返回ack,处理失败时返回nack.

由于消息回执的处理代码比较统一,因此SpringAMQP帮我们实现了消息确认。并允许我们通过配置文件设置ACK处理方式,有三种模式:

  • none:不处理。即消息投递给消费者后立刻ack,消息会立刻从MQ删除。非常不安全,不建议使用
  • manual:手动模式。需要自己在业务代码中调用api,发送ack或reject,存在业务入侵,但更灵活
  • auto:自动模式。SpringAMQP利用AOP对我们的消息处理逻辑做了环绕增强,当业务正常执行时则自动返回ack. 当业务出现异常时,根据异常判断返回不同结果:
    • 如果是业务异常,会自动返回nack;
    • 如果是消息处理或校验异常,自动返回reject;
spring:rabbitmq:listener:simple:acknowledge-mode: none # 不做处理

3.2 失败重试机制

当消费者出现异常后,消息会不断requeue(重入队)到队列,再重新发送给消费者。如果消费者再次执行依然出错,消息会再次requeue到队列,再次投递,直到消息处理成功为止。

spring:rabbitmq:listener:simple:retry:enabled: true # 开启消费者失败重试initial-interval: 1000ms # 初识的失败等待时长为1秒multiplier: 1 # 失败的等待时长倍数,下次等待时长 = multiplier * last-intervalmax-attempts: 3 # 最大重试次数stateless: true # true无状态;false有状态。如果业务中包含事务,这里改为false

3.3 失败处理策略

@Configuration
@ConditionalOnProperty(name = "spring.rabbitmq.listener.simple.retry.enabled", havingValue = "true")
public class ErrorMessageConfig {@Beanpublic DirectExchange errorMessageExchange(){return new DirectExchange("error.direct");}@Beanpublic Queue errorQueue(){return new Queue("error.queue", true);}@Beanpublic Binding errorBinding(Queue errorQueue, DirectExchange errorMessageExchange){return BindingBuilder.bind(errorQueue).to(errorMessageExchange).with("error");}@Beanpublic MessageRecoverer republishMessageRecoverer(RabbitTemplate rabbitTemplate){return new RepublishMessageRecoverer(rabbitTemplate, "error.direct", "error");}
}

3.4 业务幂等性

3.4.1 唯一消息ID
  1. 每一条消息都生成一个唯一的id,与消息一起投递给消费者。
  2. 消费者接收到消息后处理自己的业务,业务处理成功后将消息ID保存到数据库
  3. 如果下次又收到相同消息,去数据库查询判断是否存在,存在则为重复消息放弃处理。
@Bean
public MessageConverter messageConverter(){// 1.定义消息转换器Jackson2JsonMessageConverter jjmc = new Jackson2JsonMessageConverter();// 2.配置自动创建消息id,用于识别不同消息,也可以在业务中基于ID判断是否是重复消息jjmc.setCreateMessageIds(true);return jjmc;
}
3.4.2 业务判断

例如处理消息的业务逻辑是把订单状态从未支付修改为已支付。因此我们就可以在执行业务时判断订单状态是否是未支付,如果不是则证明订单已经被处理过,无需重复处理。

3.5 兜底方案

既然MQ通知不一定发送到交易服务,那么交易服务就必须自己主动去查询支付状态。这样即便支付服务的MQ通知失败,我们依然能通过主动查询来保证订单状态的一致。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/685426.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用TinyXML-2解析XML文件

一、XML介绍 当我们想要在不同的程序、系统或平台之间共享信息时&#xff0c;就需要一种统一的方式来组织和表示数据。XML&#xff08;EXtensible Markup Language&#xff0c;即可扩展标记语言&#xff09;是一种用于描述数据的标记语言&#xff0c;它让数据以一种结构化的方…

JavaWeb:SpingBoot原理 --黑马笔记

1. 配置优先级 在我们前面的课程当中&#xff0c;我们已经讲解了SpringBoot项目当中支持的三类配置文件&#xff1a; application.properties application.yml application.yaml 在SpringBoot项目当中&#xff0c;我们要想配置一个属性&#xff0c;可以通过这三种方式当中…

OpenCV Mat实例详解 三

OpenCV Mat实例详解 一、二介绍了&#xff0c;OpenCV Mat类构造函数及其公共属性。下面继续介绍OpenCV Mat类公有静态成员函数 OpenCV Mat类公有静态成员函数&#xff08;Static Public Member Functions&#xff09; static CV_NODISCARD_STD Mat diag (const Mat &d)&…

云计算基础-存储虚拟化(深信服aSAN分布式存储)

什么是存储虚拟化 分布式存储是利用虚拟化技术 “池化”集群存储卷内通用X86服务器中的本地硬盘&#xff0c;实现服务器存储资源的统一整合、管理及调度&#xff0c;最终向上层提供NFS、ISCSI存储接口&#xff0c;供虚拟机根据自身的存储需求自由分配使用资源池中的存储空间。…

代码随想录刷题笔记-Day17

1. 路径总和 112. 路径总和https://leetcode.cn/problems/path-sum/ 给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点 的路径&#xff0c;这条路径上所有节点值相加等于目标和 targetSum 。如果存在&#xff0c;返回 true …

循序渐进-讲解Markdown进阶(Mermaid绘图)-附使用案例

Markdown 进阶操作 查看更多学习笔记&#xff1a;GitHub&#xff1a;LoveEmiliaForever Mermaid官网 由于CSDN对某些Mermaid或Markdown语法不支持&#xff0c;因此我的某些效果展示使用图片进行 下面的笔记内容全部是我根据Mermaid官方文档学习的&#xff0c;因为是初学者所以…

记录 | windows pyqt5 pycharm配置

一、下载安装 离线安装 通过PyPI下载 https://pypi.org/ 依此搜索 python_dotenv&#xff0c;PyQt5_sip&#xff0c;PyQt5&#xff0c;pyqt5_tools&#xff0c;注意PyQt5和pyqt5_tools版本对应。 下载之后放在\Anaconda3\Lib\site-packagescmd依次 pip install *.whl 二…

人工智能学习与实训笔记(十四):Langchain Agent

0、概要 Agent是干什么的&#xff1f; Agent的核心思想是使用语言模型&#xff08;LLM&#xff09;作为推理的大脑&#xff0c;以制定解决问题的计划、借助工具实施动作。在agents中几个关键组件如下&#xff1a; Agent&#xff1a;制定计划和思考下一步需要采取的行动。Tools…

跟着pink老师前端入门教程-day27

三、变量 &#xff08;一&#xff09;变量概述 1、什么是变量 白话&#xff1a;变量就是一个装东西的盒子 通俗&#xff1a;变量是用于存放数据的容器&#xff0c;通过变量名获取数据&#xff0c;甚至数据可以修改 2、变量在内存中的存储 本质&#xff1a;变量是程序在内存…

Java毕业设计-基于ssm的网上餐厅管理系统-第72期

获取源码资料&#xff0c;请移步从戎源码网&#xff1a;从戎源码网_专业的计算机毕业设计网站 项目介绍 基于ssm的网上餐厅管理系统&#xff1a;前端jsp、jquery、bootstrap&#xff0c;后端 maven、springmvc、spring、mybatis&#xff0c;集成类名管理、菜品管理、订单管理…

(17)Hive ——MR任务的map与reduce个数由什么决定?

一、MapTask的数量由什么决定&#xff1f; MapTask的数量由以下参数决定 文件个数文件大小blocksize 一般而言&#xff0c;对于每一个输入的文件会有一个map split&#xff0c;每一个分片会开启一个map任务&#xff0c;很容易导致小文件问题&#xff08;如果不进行小文件合并&…

Sora:AI视频生产力的颠覆性跃进,让创意瞬间成“视界”!

在AI视频技术宇宙中&#xff0c;RunwayGen2、Stable Video Diffusion和Pika等明星产品早已名声在外。然而&#xff0c;今日横空出世的Sora犹如一颗璀璨新星&#xff0c;以其震撼性的创新突破&#xff0c;在视频制作领域掀起了一场革命&#xff01;相较于市面上同类AI视频神器&a…

使用 Mermaid 创建流程图,序列图,甘特图

使用 Mermaid 创建流程图和图表 Mermaid 是一个流行的 JavaScript 库&#xff0c;用于创建流程图、序列图、甘特图和其他各种图表。它的简洁语法使得创建图表变得非常简单&#xff0c;无需复杂的绘图工具或专业的编程技能。在本文中&#xff0c;我们将讲解如何使用 Mermaid 来创…

android获取sha1

1.cmd在控制台获取 切换到Android Studio\jre\bin目录下执行keytool -list -v -keystore 签名文件路径例如&#xff1a; 2.也可以在android studio中获取 在Terminal中输入命令&#xff1a;keytool -list -v -keystore 签名文件路径获取 获取到的sha1如下&#xff1a;

理解并实现OpenCV中的图像平滑技术

导读 图像模糊&#xff08;也称为图像平滑&#xff09;是计算机视觉和图像处理中的基本操作之一。模糊图像通常是噪声减少、边缘检测和特征提取等应用的第一步。在本博客中&#xff0c;我们将重点介绍如何使用Python中的OpenCV库应用多种模糊技术。 理论概述&#xff1a; 基本…

【报告解析】OpenAI Sora视频模型官方报告全解析 | 效果,能力以及基本原理

省流版 1 核心数据处理将视频数据整合成一个一个的Patch&#xff0c;方便统一训练数据&#xff0c;利用扩散Transformer架构 2 功能效果除了可以实现基础的文生视频外&#xff0c;实际上还有非常惊艳的视频延展&#xff0c;视频编辑&#xff0c;视频连接等多种功能&#xff0…

算法--数论二

这里写目录标题 高斯消元高斯消元求线性方程组用途高斯消元的数学思想例题代码 二级目录 一级目录二级目录二级目录二级目录 一级目录二级目录二级目录二级目录 一级目录二级目录二级目录二级目录 一级目录二级目录二级目录二级目录 高斯消元 高斯消元求线性方程组 用途 这个…

VScode写LaTeX配置,实测有效

环境配置请看LaTeX环境配置-TexLive&#xff0c;实测有效http://t.csdnimg.cn/0txlL VScode写LaTeX配置 0.smatra pdf下载 如果使用外部pdf查看器&#xff0c;比如我用的sumatra pdf,官网是Sumatra PDF reader download page 下载对应版本&#xff0c;比如64位&#xff0c;下…

Pandas:DataFrame的完整指南【第82篇—DataFrame】

Pandas&#xff1a;DataFrame的完整指南 Pandas是Python中最流行的数据处理库之一&#xff0c;而其中的DataFrame对象是数据处理的核心。DataFrame为我们提供了一个强大而灵活的数据结构&#xff0c;使得数据的清洗、分析和可视化变得更加简便。在本文中&#xff0c;我们将深入…

leetcode hot100爬楼梯

在本题目中&#xff0c;要求爬第n阶有多少种爬法&#xff0c;并且每次只能爬1个或者2个&#xff0c;这明显是动态规划的问题&#xff0c;我们需要用动态规划的解决方式去处理问题。动态规划就是按照正常的顺序由前向后依次推导。而递归则是从结果往前去寻找&#xff08;个人理解…