(17)Hive ——MR任务的map与reduce个数由什么决定?

一、MapTask的数量由什么决定?

    MapTask的数量由以下参数决定

  • 文件个数
  • 文件大小
  • blocksize

 一般而言,对于每一个输入的文件会有一个map split,每一个分片会开启一个map任务,很容易导致小文件问题(如果不进行小文件合并,极可能导致Hadoop集群资源雪崩)

hive中小文件产生的原因及解决方案见文章:

(14)Hive调优——合并小文件-CSDN博客文章浏览阅读779次,点赞10次,收藏17次。Hive的小文件问题https://blog.csdn.net/SHWAITME/article/details/136108785

maxSize的默认值为256M,minSize的默认值是1byte切片大小splitSize的计算公式:

splitSize=Min(maxSize,Max(minSize,blockSize)) = Min(256M,Max(1 byte ,128M)) = 128M =blockSize

所以默认splitSize就等于blockSize块大小

# minSize的默认值是1byte
set mapred.min.split.size=1#maxSize的默认值为256M
set mapred.max.split.size=256000000#hive.input.format是用来指定输入格式的参数。决定了Hive读取数据时使用的输入格式,
set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat

二、如何调整MapTask的数量

  假设blockSize一直是128M,且splitSize = blockSize = 128M。在不改变blockSize块大小的情况下,如何增加/减少mapTask数量

2.1 增加map的数量

      增加map:需要调小maxSize,且要小于blockSize才有效,例如maxSize调成100byte

      splitSize=Min(maxSize,Max(minSize,blockSize)) = Min(100,Max(1,128*1000*1000)) =100 byte = maxSize

   调整前的map数 = 输入文件的大小/ splitSize = 输入文件的大小/ 128M

   调整后的map数 = 输入文件的大小/ splitSize = 输入文件的大小/ 100byte

2.2 减少map的数量 

     减少map:需要调大minSize ,且要大于blockSize才有效,例如minSize 调成200M

      splitSize=Min(maxSize,Max(minSize,blockSize)) = Min(256m, Max(200M,128M)) = 200M=minSize

   调整前的map数 = 输入文件的大小/ splitSize = 输入文件的大小/ 128M

   调整后的map数 = 输入文件的大小/ splitSize = 输入文件的大小/ 200M

三、ReduceTask的数量决定

    reduce的个数决定hdfs上落地文件的个数(即: reduce个数决定文件的输出个数)。 ReduceTask的数量,由参数mapreduce.job.reduces 控制,默认值为 -1 时,代表ReduceTask的数量是根据hive的数据量动态计算的。

总体而言,ReduceTask的数量决定方式有以下两种:

3.1 方式一:hive动态计算

3.1.1 动态计算公式

 ReduceTask数量 = min (参数2,输入的总数据量/ 参数1)

参数1:hive.exec.reducers.bytes.per.reducer 

      含义:每个reduce任务处理的数据量(默认值:256M)

参数2:hive.exec.reducers.max 

     含义:每个MR任务能开启的reduce任务数的上限值(默认值:1009个)

ps: 一般参数2的值不会轻易变动,因此在普通集群规模下,hive根据数据量动态计算reduce的个数,计算公式为:输入总数据量/hive.exec.reducers.bytes.per.reducer

3.1.2 源码分析

(1)通过源码分析 hive是如何动态计算reduceTask的个数的?

	在org.apache.hadoop.hive.ql.exec.mr包下的 MapRedTask类中//方法类调用逻辑MapRedTask | ----setNumberOfReducers | ---- estimateNumberOfReducers|---- estimateReducers         

(2)核心方法setNumberOfReducers(读取 用户手动设置的reduce个数)

  /*** Set the number of reducers for the mapred work.*/private void setNumberOfReducers() throws IOException {ReduceWork rWork = work.getReduceWork();// this is a temporary hack to fix things that are not fixed in the compiler// 获取通过外部传参设置reduce数量的值 rWork.getNumReduceTasks() Integer numReducersFromWork = rWork == null ? 0 : rWork.getNumReduceTasks();if (rWork == null) {console.printInfo("Number of reduce tasks is set to 0 since there's no reduce operator");} else {if (numReducersFromWork >= 0) {//如果手动设置了reduce的数量 大于等于0 ,则进来,控制台打印日志console.printInfo("Number of reduce tasks determined at compile time: "+ rWork.getNumReduceTasks());} else if (job.getNumReduceTasks() > 0) {//如果手动设置了reduce的数量,获取配置中的值,并传入到work中int reducers = job.getNumReduceTasks();rWork.setNumReduceTasks(reducers);console.printInfo("Number of reduce tasks not specified. Defaulting to jobconf value of: "+ reducers);} else {//如果没有手动设置reduce的数量,进入方法if (inputSummary == null) {inputSummary =  Utilities.getInputSummary(driverContext.getCtx(), work.getMapWork(), null);}// #==========【重中之中】estimateNumberOfReducers int reducers = Utilities.estimateNumberOfReducers(conf, inputSummary, work.getMapWork(),work.isFinalMapRed());rWork.setNumReduceTasks(reducers);console.printInfo("Number of reduce tasks not specified. Estimated from input data size: "+ reducers);}//hive shell中所看到的控制台打印日志就在这里console.printInfo("In order to change the average load for a reducer (in bytes):");console.printInfo("  set " + HiveConf.ConfVars.BYTESPERREDUCER.varname+ "=<number>");console.printInfo("In order to limit the maximum number of reducers:");console.printInfo("  set " + HiveConf.ConfVars.MAXREDUCERS.varname+ "=<number>");console.printInfo("In order to set a constant number of reducers:");console.printInfo("  set " + HiveConf.ConfVars.HADOOPNUMREDUCERS+ "=<number>");}}

 (3)如果没有手动设置reduce的个数,hive是如何动态计算reduce个数的?

    int reducers = Utilities.estimateNumberOfReducers(conf, inputSummary, work.getMapWork(),work.isFinalMapRed());/*** Estimate the number of reducers needed for this job, based on job input,* and configuration parameters.** The output of this method should only be used if the output of this* MapRedTask is not being used to populate a bucketed table and the user* has not specified the number of reducers to use.** @return the number of reducers.*/public static int estimateNumberOfReducers(HiveConf conf, ContentSummary inputSummary,MapWork work, boolean finalMapRed) throws IOException {// bytesPerReducer 每个reduce处理的数据量,默认值为256M  BYTESPERREDUCER("hive.exec.reducers.bytes.per.reducer", 256000000L)long bytesPerReducer = conf.getLongVar(HiveConf.ConfVars.BYTESPERREDUCER);//整个mr任务,可以开启的reduce个数的上限值:maxReducers的默认值1009个MAXREDUCERS("hive.exec.reducers.max", 1009)int maxReducers = conf.getIntVar(HiveConf.ConfVars.MAXREDUCERS);//#===========对totalInputFileSize的计算double samplePercentage = getHighestSamplePercentage(work);long totalInputFileSize = getTotalInputFileSize(inputSummary, work, samplePercentage);// if all inputs are sampled, we should shrink the size of reducers accordingly.if (totalInputFileSize != inputSummary.getLength()) {LOG.info("BytesPerReducer=" + bytesPerReducer + " maxReducers="+ maxReducers + " estimated totalInputFileSize=" + totalInputFileSize);} else {LOG.info("BytesPerReducer=" + bytesPerReducer + " maxReducers="+ maxReducers + " totalInputFileSize=" + totalInputFileSize);}// If this map reduce job writes final data to a table and bucketing is being inferred,// and the user has configured Hive to do this, make sure the number of reducers is a// power of twoboolean powersOfTwo = conf.getBoolVar(HiveConf.ConfVars.HIVE_INFER_BUCKET_SORT_NUM_BUCKETS_POWER_TWO) &&finalMapRed && !work.getBucketedColsByDirectory().isEmpty();//#==============【真正计算reduce个数的方法】看源码的技巧return的方法是重要核心方法return estimateReducers(totalInputFileSize, bytesPerReducer, maxReducers, powersOfTwo);}                                                

(4) 动态计算reduce个数的方法 estimateReducers

	public static int estimateReducers(long totalInputFileSize, long bytesPerReducer,int maxReducers, boolean powersOfTwo) {double bytes = Math.max(totalInputFileSize, bytesPerReducer);// 假设totalInputFileSize 1000M// bytes=Math.max(1000M,256M)=1000Mint reducers = (int) Math.ceil(bytes / bytesPerReducer);//reducers=(int)Math.ceil(1000M/256M)=4  此公式说明如果totalInputFileSize 小于256M ,则reducers=1 ;也就是当输入reduce端的数据量特别小,即使手动设置reduce Task数量为5,最终也只会开启1个reduceTaskreducers = Math.max(1, reducers);//Math.max(1, 4)=4 ,reducers的结果还是4reducers = Math.min(maxReducers, reducers);//Math.min(1009,4)=4; reducers的结果还是4int reducersLog = (int)(Math.log(reducers) / Math.log(2)) + 1;int reducersPowerTwo = (int)Math.pow(2, reducersLog);if (powersOfTwo) {// If the original number of reducers was a power of two, use thatif (reducersPowerTwo / 2 == reducers) {// nothing to do} else if (reducersPowerTwo > maxReducers) {// If the next power of two greater than the original number of reducers is greater// than the max number of reducers, use the preceding power of two, which is strictly// less than the original number of reducers and hence the maxreducers = reducersPowerTwo / 2;} else {// Otherwise use the smallest power of two greater than the original number of reducersreducers = reducersPowerTwo;}}return reducers;}

3.2 方式二:用户手动指定

 手动调整reduce个数: set mapreduce.job.reduces = 10

 需要注意:出现以下几种情况时,手动调整reduce个数不生效。

3.2.1 order by 全局排序

   sql中使用了order by全局排序,那只能在一个reduce中完成,无论怎么调整reduce的数量都是无效的。

  hive (default)>set mapreduce.job.reduces=5;hive (default)> select * from empt order  by length(ename);Hadoop job information for Stage-1: number of mappers: 1; number of reducers: 1

3.2.2 map端输出的数据量很小

在【3.1.2 源码分析——(4) 】动态计算reduce个数的核心方法 estimateReducers中,有下面这三行代码:

int reducers = (int) Math.ceil(bytes / bytesPerReducer);
reducers = Math.max(1, reducers);
reducers = Math.min(maxReducers, reducers);

   如果map端输出的数据量bytes (假如只有1M) 远小于hive.exec.reducers.bytes.per.reducer (每个reduce处理的数据量默认值为256M) 参数值,maxReducers默认为1009个,计算下列值:

  int reducers  = (int) Math.ceil(1 / 256M)=1;reducers = Math.max(1, 1)=1;reducers = Math.min(1009, 1)=1;

  此时即使用户手动 set mapreduce.job.reduces=10,也不生效,reduce个数最后还是只有1个。

参考文章:

Hive mapreduce的map与reduce个数由什么决定?_hive中map任务和reduce任务数量计算原理-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/685412.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C# CAD 框选pdf输出

在C#中进行AutoCAD二次开发时&#xff0c;实现框选&#xff08;窗口选择&#xff09;实体并输出这些实体到PDF文件通常涉及以下步骤&#xff1a; public ObjectIdCollection GetSelectedEntities() {using (var acTrans HostApplicationServices.WorkingDatabase.Transaction…

代码随想录算法训练营29期Day52|LeetCode 198,213,337

文档讲解&#xff1a;打家劫舍 打家劫舍II 打家劫舍III 198.打家劫舍 题目链接&#xff1a;https://leetcode.cn/problems/house-robber/description/ 思路&#xff1a; 设dp[i]&#xff1a;考虑下标i&#xff08;包括i&#xff09;以内的房屋&#xff0c;最多可以偷窃的金…

Sora:AI视频生产力的颠覆性跃进,让创意瞬间成“视界”!

在AI视频技术宇宙中&#xff0c;RunwayGen2、Stable Video Diffusion和Pika等明星产品早已名声在外。然而&#xff0c;今日横空出世的Sora犹如一颗璀璨新星&#xff0c;以其震撼性的创新突破&#xff0c;在视频制作领域掀起了一场革命&#xff01;相较于市面上同类AI视频神器&a…

【洛谷 P3367】【模板】并查集 题解(并查集+启发式合并)

【模板】并查集 题目描述 如题&#xff0c;现在有一个并查集&#xff0c;你需要完成合并和查询操作。 输入格式 第一行包含两个整数 N , M N,M N,M ,表示共有 N N N 个元素和 M M M 个操作。 接下来 M M M 行&#xff0c;每行包含三个整数 Z i , X i , Y i Z_i,X_i,Y…

力扣57题:插入区间

题目链接】 力扣&#xff08;LeetCode&#xff09;官网 - 全球极客挚爱的技术成长平台 【解题代码】 class Solution {public int[][] insert(int[][] intervals, int[] newInterval) {List<int[]> intervalList new ArrayList<>();boolean newIntervalInsert …

使用 Mermaid 创建流程图,序列图,甘特图

使用 Mermaid 创建流程图和图表 Mermaid 是一个流行的 JavaScript 库&#xff0c;用于创建流程图、序列图、甘特图和其他各种图表。它的简洁语法使得创建图表变得非常简单&#xff0c;无需复杂的绘图工具或专业的编程技能。在本文中&#xff0c;我们将讲解如何使用 Mermaid 来创…

【动态规划】买卖股票问题

1.一次买入&#xff0c;一次卖出 买卖股票1 1.明确dp[i][0] dp[i][1]含义 dp[i][0]:表示可能在前i天(包括第i天)不持有该股票,产生的最大收益 dp[i][1]:表示可能在前i天(包括第i天)持有该股票,产生的最大收益 2.递推公式 dp[i][0]可能在i天之前卖出&#xff0c;所以的dp[i]…

android获取sha1

1.cmd在控制台获取 切换到Android Studio\jre\bin目录下执行keytool -list -v -keystore 签名文件路径例如&#xff1a; 2.也可以在android studio中获取 在Terminal中输入命令&#xff1a;keytool -list -v -keystore 签名文件路径获取 获取到的sha1如下&#xff1a;

理解并实现OpenCV中的图像平滑技术

导读 图像模糊&#xff08;也称为图像平滑&#xff09;是计算机视觉和图像处理中的基本操作之一。模糊图像通常是噪声减少、边缘检测和特征提取等应用的第一步。在本博客中&#xff0c;我们将重点介绍如何使用Python中的OpenCV库应用多种模糊技术。 理论概述&#xff1a; 基本…

【报告解析】OpenAI Sora视频模型官方报告全解析 | 效果,能力以及基本原理

省流版 1 核心数据处理将视频数据整合成一个一个的Patch&#xff0c;方便统一训练数据&#xff0c;利用扩散Transformer架构 2 功能效果除了可以实现基础的文生视频外&#xff0c;实际上还有非常惊艳的视频延展&#xff0c;视频编辑&#xff0c;视频连接等多种功能&#xff0…

Android 11.0 SystemUI禁用长按recent键的分屏功能

1.前言 在11.0的系统rom产品定制化中,系统对于多窗口模式默认会有分屏功能的,但是在某些产品中,需要禁用分屏模式,所以需要在导航栏中 禁用长按recent的分屏模式功能,接下来分析下相关分屏模式的实现 2.SystemUI禁用长按recent键的分屏功能的核心类 frameworks\base\…

算法--数论二

这里写目录标题 高斯消元高斯消元求线性方程组用途高斯消元的数学思想例题代码 二级目录 一级目录二级目录二级目录二级目录 一级目录二级目录二级目录二级目录 一级目录二级目录二级目录二级目录 一级目录二级目录二级目录二级目录 高斯消元 高斯消元求线性方程组 用途 这个…

VScode写LaTeX配置,实测有效

环境配置请看LaTeX环境配置-TexLive&#xff0c;实测有效http://t.csdnimg.cn/0txlL VScode写LaTeX配置 0.smatra pdf下载 如果使用外部pdf查看器&#xff0c;比如我用的sumatra pdf,官网是Sumatra PDF reader download page 下载对应版本&#xff0c;比如64位&#xff0c;下…

Pandas:DataFrame的完整指南【第82篇—DataFrame】

Pandas&#xff1a;DataFrame的完整指南 Pandas是Python中最流行的数据处理库之一&#xff0c;而其中的DataFrame对象是数据处理的核心。DataFrame为我们提供了一个强大而灵活的数据结构&#xff0c;使得数据的清洗、分析和可视化变得更加简便。在本文中&#xff0c;我们将深入…

【图论经典题目讲解】洛谷 P5304 旅行者

P5304 旅行者 D e s c r i p t i o n \mathrm{Description} Description 给定一个 n n n 个点&#xff0c; m m m 条边的有向图&#xff0c;求解 k k k 个点两两间最短路长度的最小值。 S o l u t i o n \mathrm{Solution} Solution 对于 k k k 个点&#xff0c;可以考虑二…

leetcode hot100爬楼梯

在本题目中&#xff0c;要求爬第n阶有多少种爬法&#xff0c;并且每次只能爬1个或者2个&#xff0c;这明显是动态规划的问题&#xff0c;我们需要用动态规划的解决方式去处理问题。动态规划就是按照正常的顺序由前向后依次推导。而递归则是从结果往前去寻找&#xff08;个人理解…

Android 9.0 禁用adb shell input输入功能

1.前言 在9.0的系统rom产品开发中,在进行一些定制开发中,对于一些adb shell功能需要通过属性来控制禁止使用input 等输入功能,比如adb shell input keyevent 响应输入事件等,所以就需要 熟悉adb shell input的输入事件流程,然后来禁用adb shell input的输入事件功能,接…

docker的常用命令有哪些?

Docker 是一种容器化平台&#xff0c;用于构建、部署和运行应用程序。下面是一些常用的 Docker 命令&#xff1a; 镜像相关命令&#xff1a; docker images&#xff1a;列出本地的镜像。docker pull <镜像名>&#xff1a;从 Docker 仓库中拉取镜像。docker build -t <…

光芒绽放:妙用“GLAD原则”打造标准的数据可视化图表

光芒绽放&#xff1a;妙用“GLAD原则”打造标准的数据可视化图表 文章目录 光芒绽放&#xff1a;妙用“GLAD原则”打造标准的数据可视化图表前言一、可视化工具有哪些&#xff1f;二、那如何做出正确可视化图表 &#xff1f;GLAD原则1.G原则2.L原则3.A原则4.D原则 三、总结最后…

《VulnStack》ATTCK-1

title: 《VulnStack》ATT&CK-1 date: 2024-01-29 14:53:49 updated: 2024-02-14 18:55:49 categories: WriteUp&#xff1a;Cyber-Range excerpt: 主机发现、端口扫描&#xff0c;服务探测&#xff0c;操作系统探测、nmap 漏洞库扫描、网站首页信息泄露、msf 渗透与信息收集…