二维数据的白化处理

二维数据的白化处理

这篇博客实现起来比较简单,首先先去下载pca_2d.zip然后打开pca_2d.m改代码,具体代码见下面
close all


%%================================================================
%% Step 0: Load data
%  We have provided the code to load data from pcaData.txt into x.
%  x is a 2 * 45 matrix, where the kth column x(:,k) corresponds to
%  the kth data point.Here we provide the code to load natural image data into x.
%  You do not need to change the code below.
%从txt文件里面加载数据,并画出原始数据散点图
x = load('pcaData.txt','-ascii');
figure(1);
scatter(x(1, :), x(2, :));
title('Raw data');




%%================================================================
%% Step 1a: Implement PCA to obtain U 
%  Implement PCA to obtain the rotation matrix U, which is the eigenbasis
%  sigma. 


% -------------------- YOUR CODE HERE -------------------- 
%得到特征向量,u是特征向量,s是特征值,v是u'
u = zeros(size(x, 1)); % You need to compute this
[u,s,v]=svd(x);


% -------------------------------------------------------- 
hold on
plot([0 u(1,1)], [0 u(2,1)]);
plot([0 u(1,2)], [0 u(2,2)]);
scatter(x(1, :), x(2, :));
hold off


%%================================================================
%% Step 1b: Compute xRot, the projection on to the eigenbasis
%  Now, compute xRot by projecting the data on to the basis defined
%  by U. Visualize the points by performing a scatter plot.


% -------------------- YOUR CODE HERE -------------------- 
%计算出xRot
xRot = zeros(size(x)); % You need to compute this
xRot=u'*x;




% -------------------------------------------------------- 


% Visualise the covariance matrix. You should see a line across the
% diagonal against a blue background.
figure(2);
scatter(xRot(1, :), xRot(2, :));
title('xRot');


%%================================================================
%% Step 2: Reduce the number of dimensions from 2 to 1. 
%  Compute xRot again (this time projecting to 1 dimension).
%  Then, compute xHat by projecting the xRot back onto the original axes 
%  to see the effect of dimension reduction


% -------------------- YOUR CODE HERE -------------------- 
%得到xHat,去除第二维向量
k = 1; % Use k = 1 and project the data onto the first eigenbasis
xHat = zeros(size(x)); % You need to compute this
xHat(1:k,:)=xRot(1:k,:);
xHat=u*xHat;




% -------------------------------------------------------- 
figure(3);
scatter(xHat(1, :), xHat(2, :));
title('xHat');




%%================================================================
%% Step 3: PCA Whitening
%  Complute xPCAWhite and plot the results.
%PCA白化处理,使用epsilon是为了正则化
epsilon = 1e-5;
% -------------------- YOUR CODE HERE -------------------- 
xPCAWhite = zeros(size(x)); % You need to compute this
xPCAWhite = diag(1./sqrt(diag(s)+epsilon))*xRot;






% -------------------------------------------------------- 
figure(4);
scatter(xPCAWhite(1, :), xPCAWhite(2, :));
title('xPCAWhite');


%%================================================================
%% Step 3: ZCA Whitening
%  Complute xZCAWhite and plot the results.
%ZCA处理,使得结果更接近原始数据
% -------------------- YOUR CODE HERE -------------------- 
xZCAWhite = zeros(size(x)); % You need to compute this
xZCAWhite = u*xPCAWhite;


% -------------------------------------------------------- 
figure(5);
scatter(xZCAWhite(1, :), xZCAWhite(2, :));
title('xZCAWhite');


%% Congratulations! When you have reached this point, you are done!
%  You can now move onto the next PCA exercise. :)
最终你会看到6张图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/566046.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【youcans 的图像处理学习课】4. 图像的叠加与混合

专栏地址:『youcans 的图像处理学习课』 文章目录:『youcans 的图像处理学习课 - 总目录』 【youcans 的图像处理学习课】4. 图像的叠加与混合 文章目录【youcans 的图像处理学习课】4. 图像的叠加与混合1. 图像的加法运算基本例程:1.22 图像…

PCA白化

自然图片的PCA白化 在这个练习里面我们将实现PCA和ZCA白化。首先先下载这个文件pca_exercise.zip, 然后我们解压它,并用matlab打开它,我们只需要更改pca_gen.m.这个文件。 然后把代码改成下面这个形式 %% %% Step 0a: Load data % Here we provide th…

【OpenCV 例程200篇】17. 两张图像的渐变切换

专栏地址:『youcans 的 OpenCV 例程 200 篇』 文章目录:『youcans 的 OpenCV 例程200篇 - 总目录』 【youcans 的 OpenCV 例程 200 篇】17. 两张图像渐变切换 函数 cv2.addWeight() 用于图像的加权加法运算。 函数说明: cv2.addWeighted(sr…

深度网络概览

深度网络概览 Contents [hide]1 概述2 深度网络的优势3 训练深度网络的困难 3.1 数据获取问题3.2 局部极值问题3.3 梯度弥散问题 4 逐层贪婪训练方法 4.1 数据获取4.2 更好的局部极值 5 中英文对照6 中文译者 概述 在之前的章节中,你已经构建了一个包括输入层、隐…

【OpenCV 例程200篇】18. 图像的掩模加法(mask)

专栏地址:『youcans 的 OpenCV 例程 200 篇』 文章目录:『youcans 的 OpenCV 例程200篇 - 总目录』 【youcans 的 OpenCV 例程200篇】18. 图像的掩模加法 图像掩模(image mask),也常被写成 “图像掩膜”,是…

【OpenCV 例程200篇】19. 图像的圆形遮罩

专栏地址:『youcans 的 OpenCV 例程 200 篇』 文章目录:『youcans 的 OpenCV 例程200篇 - 总目录』 【youcans 的 OpenCV 例程200篇】19. 图像的圆形遮罩 图像掩模(image mask),也常被写成 “图像掩膜”,是…

【OpenCV 例程200篇】20. 图像的按位运算(cv2.bitwise)

专栏地址:『youcans 的 OpenCV 例程 200 篇』 文章目录:『youcans 的 OpenCV 例程200篇 - 总目录』 【youcans 的 OpenCV 例程200篇】20. 图像的按位运算 函数 cv2.bitwise 提供了图像的位运算,对图像的像素点值按位操作,快速高效…

栈式自编码算法

栈式自编码算法 Contents [hide]1 概述2 训练3 具体实例4 讨论5 中英文对照6 中文译者 概述 逐层贪婪训练法依次训练网络的每一层,进而预训练整个深度神经网络。在本节中,我们将会学习如何将自编码器“栈化”到逐层贪婪训练法中,从而预训练…

【OpenCV 例程200篇】21. 图像的叠加

『youcans 的 OpenCV 例程200篇 - 总目录』 【OpenCV 例程200篇】21. 图像的叠加 两张图像直接进行加法运算后图像的颜色会改变,通过加权加法实现图像混合后图像的透明度会改变,都不能实现图像的叠加。 实现图像的叠加,需要综合运用图像阈值…

微调多层自编码算法

微调多层自编码算法 Contents [hide]1 介绍2 一般策略3 使用反向传播法进行微调4 中英文对照5 中文译者 介绍 微调是深度学习中的常用策略,可以大幅提升一个栈式自编码神经网络的性能表现。从更高的视角来讲,微调将栈式自编码神经网络的所有层视为一个…

【OpenCV 例程200篇】22. 图像添加非中文文字(cv2.putText)

『youcans 的 OpenCV 例程200篇 - 总目录』 【youcans 的 OpenCV 例程200篇】22. 图像添加非中文文字 函数 cv2.putText() 用于在图像上绘制文本字符串,即添加文字。 OpenCV 不支持显示中文字符,使用 cv2.putText() 时添加的文本字符串不能包含中文字符…

自我学习

自我学习 今天让我们来完成自我学习的代码。完成这个代码需要结合稀疏自编码和softmax分类器,具体的可以看我以前的博客。依赖MNIST DatasetSupport functions for loading MNIST in MatlabStarter Code (stl_exercise.zip) 第一步:生成相应的输入和测试数据集这需要…

【OpenCV 例程200篇】23. 图像添加中文文字(ImageDraw.Draw)

『youcans 的 OpenCV 例程200篇 - 总目录』 【youcans 的 OpenCV 例程200篇】23. 图像添加中文文字 OpenCV 不支持显示中文字符,使用 cv2.putText() 时添加的文本字符串不能包含中文字符(包括中文标点符号)。在图像中添加中文字符&#xff0…

【OpenCV 例程200篇】24. 图像的仿射变换(cv2.warpAffine)

『youcans 的 OpenCV 例程200篇 - 总目录』 【youcans 的 OpenCV 例程200篇】24. 图像的仿射变换 几何变换的可以分为等距变换、相似变换、仿射变换和投影变换。在很多书籍中把等距变换、相似变换都称为仿射变换,常见的仿射变换包括平移、旋转、缩放、翻转、斜切等…

从自我学习到深层网络

从自我学习到深层网络 在前一节中,我们利用自编码器来学习输入至 softmax 或 logistic 回归分类器的特征。这些特征仅利用未标注数据学习获得。在本节中,我们描述如何利用已标注数据进行微调,从而进一步优化这些特征。如果有大量已标注数据&a…

【OpenCV 例程200篇】25. 图像的平移(cv2.warpAffine)

『youcans 的 OpenCV 例程200篇 - 总目录』 【youcans 的 OpenCV 例程200篇】25. 图像的平移 平移是物体位置在水平和垂直方向的移动。 像素点 (x,y) 沿 x 轴平移 dx、沿 y 轴平移 dy,可以由以下公式描述: [x~y~1]MAT[xy1],MAT[10dx01dy001]\begin{bmat…

JavaScript 灯泡暗亮

程序解说:点击灯泡之后切换灯泡明暗; 点击暗的灯泡的时候灯泡会随之发亮,并且下方会输出灯泡打开时间, 点击亮的灯泡的时候灯泡会随之熄灭,并且下方会输出灯泡关闭时间. 点击图片亮暗发生变化(准备两张图片…

【OpenCV 例程200篇】26. 图像的旋转(以原点为中心)

『youcans 的 OpenCV 例程200篇 - 总目录』 【youcans 的 OpenCV 例程200篇】26. 图像的旋转(以原点为中心) 图像以原点 (0, 0) 为中心、顺时针旋转角度 θ 进行旋转操作,可以由以下公式描述: [x~y~1]MAR[xy1],MAR[cosθ−sinθ0s…

电脑滑动关机

如何让你的电脑可以像手机一样滑动关机 只需点击下拉,让你享用更快更炫酷的关机方法(滑动关机) 新建一个记事本(滑动关机.txt) 打开滑动关机.txt文件,在该文件中写入 slidetoshutdown 代码段并保存文件。…

php里面的MySql

php里面的MySql SQL 是一种标准 - 但是... SQL是一门 ANSI 的标准计算机语言,用来访问和操作数据库系统。SQL语句用于取回和更新数据库中的数据。SQL可与数据库程序协同工作,比如 MS Access、DB2、Informix、MS SQL Server、Oracle、Sybase以及其他数据…