(pytorch-深度学习系列)网络中的网络(NiN)

网络中的网络(NiN)

LeNet、AlexNet和VGG在设计上的共同之处是:先以由卷积层构成的模块充分抽取空间特征,再以由全连接层构成的模块来输出分类结果。其中,AlexNet和VGG对LeNet的改进主要在于如何对这两个模块加宽(增加通道数)和加深

网络中的网络(NiN)提出了另外一个思路,即串联多个由卷积层和“全连接”层构成的小网络来构建一个深层网络。

NiN块

卷积层的输入和输出通常是四维数组(样本,通道,高,宽),而全连接层的输入和输出则通常是二维数组(样本,特征)。如果想在全连接层后再接上卷积层,则需要将全连接层的输出变换为四维。NiN使用1×11\times 11×1卷积层来替代全连接层,从而使空间信息能够自然传递到后面的层中去。

NiN块是NiN中的基础块。它由一个卷积层加两个充当全连接层的1×11\times 11×1卷积层串联而成。其中第一个卷积层的超参数可以自行设置,而第二和第三个卷积层的超参数一般是固定的。

import time
import torch
from torch import nn, optimdevice = torch.device('cuda' if torch.cuda.is_available() else 'cpu')def nin_block(in_channels, out_channels, kernel_size, stride, padding):blk = nn.Sequential(nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding),nn.ReLU(),nn.Conv2d(out_channels, out_channels, kernel_size=1),nn.ReLU(),nn.Conv2d(out_channels, out_channels, kernel_size=1),nn.ReLU())return blk

NiN模型

NiN使用卷积窗口形状分别为11×1111\times 1111×115×55\times 55×53×33\times 33×3的卷积层,每个NiN块后接一个步幅为2、窗口形状为3×33\times 33×3的最大池化层。

NiN去掉了AlexNet最后的3个全连接层,取而代之使用了输出通道数等于标签类别数的NiN块,然后使用全局平均池化层对每个通道中所有元素求平均并直接用于分类。(这里的全局平均池化层即窗口形状等于输入空间维形状的平均池化层).

NiN的这个设计的好处是可以显著减小模型参数尺寸,从而缓解过拟合。然而,该设计有时会造成获得有效模型的训练时间的增加。

import torch.nn.functional as F
class GlobalAvgPool2d(nn.Module):# 全局平均池化层可通过将池化窗口形状设置成输入的高和宽实现def __init__(self):super(GlobalAvgPool2d, self).__init__()def forward(self, x):return F.avg_pool2d(x, kernel_size=x.size()[2:])class FlattenLayer(torch.nn.Module):def __init__(self):super(FlattenLayer, self).__init__()def forward(self, x): # x shape: (batch, *, *, ...)return x.view(x.shape[0], -1)net = nn.Sequential(nin_block(1, 96, kernel_size=11, stride=4, padding=0),nn.MaxPool2d(kernel_size=3, stride=2),nin_block(96, 256, kernel_size=5, stride=1, padding=2),nn.MaxPool2d(kernel_size=3, stride=2),nin_block(256, 384, kernel_size=3, stride=1, padding=1),nn.MaxPool2d(kernel_size=3, stride=2), nn.Dropout(0.5),# 标签类别数是10nin_block(384, 10, kernel_size=3, stride=1, padding=1),GlobalAvgPool2d(), # 将四维的输出转成二维的输出,其形状为(批量大小, 10)FlattenLayer())

简单说网络结构就是:
卷积(96个11∗11的核)(步长为4)(padding为0)→卷积(96个1∗1的核)(步长为1)→卷积(96个1∗1的核)(步长为1)→.降采样(最大池化)(3∗3的核,步长2)→.卷积(256个5∗5的核)(步长为1)(padding为2)→卷积(256个1∗1的核)(步长为1)→卷积(256个1∗1的核)(步长为1)→.降采样(最大池化)(3∗3的核,步长2)→.卷积(384个3∗3的核)(步长为1)(padding为1)→卷积(384个1∗1的核)(步长为1)→卷积(384个1∗1的核)(步长为1)→.降采样(最大池化)(3∗3的核,步长2)→.卷积(10个3∗3的核)(步长为1)(padding为1)→卷积(10个1∗1的核)(步长为1)→卷积(10个1∗1的核)(步长为1)→.降采样(平均池化)(x.size的核,步长1)\begin{matrix}卷积 \\ (96个11*11的核) \\(步长为4) \\(padding为0)\end{matrix} \rightarrow \begin{matrix}卷积 \\ (96个1*1的核) \\(步长为1)\end{matrix} \rightarrow \begin{matrix}卷积 \\ (96个1*1的核) \\(步长为1)\end{matrix} \rightarrow \\.\\ \begin{matrix}降采样(最大池化) \\ (3*3的核,步长2) \end{matrix}\rightarrow \\.\\ \begin{matrix}卷积 \\ (256个5*5的核) \\(步长为1)\\(padding为2)\end{matrix} \rightarrow \begin{matrix}卷积 \\ (256个1*1的核) \\(步长为1)\end{matrix} \rightarrow \begin{matrix}卷积 \\ (256个1*1的核) \\(步长为1)\end{matrix} \rightarrow \\.\\ \begin{matrix}降采样(最大池化) \\ (3*3的核,步长2) \end{matrix}\rightarrow \\.\\ \begin{matrix}卷积 \\ (384个3*3的核) \\(步长为1)\\(padding为1)\end{matrix} \rightarrow \begin{matrix}卷积 \\ (384个1*1的核) \\(步长为1)\end{matrix} \rightarrow \begin{matrix}卷积 \\ (384个1*1的核) \\(步长为1)\end{matrix} \rightarrow \\.\\ \begin{matrix}降采样(最大池化) \\ (3*3的核,步长2) \end{matrix}\rightarrow \\.\\ \begin{matrix}卷积 \\ (10个3*3的核) \\(步长为1)\\(padding为1)\end{matrix} \rightarrow \begin{matrix}卷积 \\ (10个1*1的核) \\(步长为1)\end{matrix} \rightarrow \begin{matrix}卷积 \\ (10个1*1的核) \\(步长为1)\end{matrix} \rightarrow \\.\\ \begin{matrix}降采样(平均池化) \\ (x.size的核,步长1) \end{matrix} (961111)(4)(padding0)(9611)(1)(9611)(1).()(332).(25655)(1)(padding2)(25611)(1)(25611)(1).()(332).(38433)(1)(padding1)(38411)(1)(38411)(1).()(332).(1033)(1)(padding1)(1011)(1)(1011)(1).()(x.size1)

构建一个数据样本来查看每一层的输出形状。

X = torch.rand(1, 1, 224, 224)
for name, blk in net.named_children(): X = blk(X)print(name, 'output shape: ', X.shape)
0 output shape:  torch.Size([1, 96, 54, 54])
1 output shape:  torch.Size([1, 96, 26, 26])
2 output shape:  torch.Size([1, 256, 26, 26])
3 output shape:  torch.Size([1, 256, 12, 12])
4 output shape:  torch.Size([1, 384, 12, 12])
5 output shape:  torch.Size([1, 384, 5, 5])
6 output shape:  torch.Size([1, 384, 5, 5])
7 output shape:  torch.Size([1, 10, 5, 5])
8 output shape:  torch.Size([1, 10, 1, 1])
9 output shape:  torch.Size([1, 10])

训练:

def train(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs):net = net.to(device)print("training on ", device)loss = torch.nn.CrossEntropyLoss()for epoch in range(num_epochs):train_l_sum, train_acc_sum, n, batch_count, start = 0.0, 0.0, 0, 0, time.time()for X, y in train_iter:X = X.to(device)y = y.to(device)y_hat = net(X)l = loss(y_hat, y)optimizer.zero_grad()l.backward()optimizer.step()train_l_sum += l.cpu().item()train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item()n += y.shape[0]batch_count += 1test_acc = evaluate_accuracy(test_iter, net)print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec'% (epoch + 1, train_l_sum / batch_count, train_acc_sum / n, test_acc, time.time() - start))
batch_size = 128
# 如出现“out of memory”的报错信息,可减小batch_size或resize
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)lr, num_epochs = 0.002, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
train(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/507979.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(pytorch-深度学习)包含并行连结的网络(GoogLeNet)

包含并行连结的网络(GoogLeNet) 在2014年的ImageNet图像识别挑战赛中,一个名叫GoogLeNet的网络结构大放异彩。它虽然在名字上向LeNet致敬,但在网络结构上已经很难看到LeNet的影子。GoogLeNet吸收了NiN中网络串联网络的思想&#…

(pytorch-深度学习)批量归一化

批量归一化 批量归一化(batch normalization)层能让较深的神经网络的训练变得更加容易 通常来说,数据标准化预处理对于浅层模型就足够有效了。随着模型训练的进行,当每层中参数更新时,靠近输出层的输出较难出现剧烈变…

(pytorch-深度学习)实现残差网络(ResNet)

实现残差网络(ResNet) 我们一般认为,增加神经网络模型的层数,充分训练后的模型理论上能更有效地降低训练误差。理论上,原模型解的空间只是新模型解的空间的子空间。也就是说,如果我们能将新添加的层训练成恒等映射f(x)xf(x) xf(…

(pytorch-深度学习)实现稠密连接网络(DenseNet)

稠密连接网络(DenseNet) ResNet中的跨层连接设计引申出了数个后续工作。稠密连接网络(DenseNet)与ResNet的主要区别在于在跨层连接上的主要区别: ResNet使用相加DenseNet使用连结 ResNet(左)…

(pytorch-深度学习)语言模型-学习笔记

语言模型 自然语言处理中最常见的数据是文本数据。我们可以把一段自然语言文本看作一段离散的时间序列。 假设一段长度为TTT的文本中的词依次为w1,w2,…,wTw_1, w_2, \ldots, w_Tw1​,w2​,…,wT​,那么在离散的时间序列中: wtw_twt​(1≤t…

(pytorch-深度学习)循环神经网络

循环神经网络 在nnn元语法中,时间步ttt的词wtw_twt​基于前面所有词的条件概率只考虑了最近时间步的n−1n-1n−1个词。如果要考虑比t−(n−1)t-(n-1)t−(n−1)更早时间步的词对wtw_twt​的可能影响,需要增大nnn。 这样模型参数的数量将随之呈指数级增长…

配置jupyter-pytorch深度学习环境

配置jupyter-pytorch深度学习环境 安装anaconda3新建环境,命名为pytorch在虚拟环境里安装jupyter activate pytorch pip install jupyter安装可视化插件,ipywidgets,并且关联 pip install ipywidgets jupyter nbextension enable --py wid…

(pytorch-深度学习)SE-ResNet的pytorch实现

SE-ResNet的pytorch实现 残差块: class Resiual_block(nn.Module):def __init__(self, in, middle_out, out, kernel_size3, padding1):self.out_channel middle_outsuper(Resiual_block, self).__init__()self.shortcut nn.Sequential(nn.Conv2d(nin, nout, ke…

(pytorch-深度学习)循环神经网络的从零开始实现

循环神经网络的从零开始实现 首先,我们读取周杰伦专辑歌词数据集: import time import math import numpy as np import torch from torch import nn, optim import torch.nn.functional as F import sys sys.path.append("..") device tor…

(pytorch-深度学习)使用pytorch框架nn.RNN实现循环神经网络

使用pytorch框架nn.RNN实现循环神经网络 首先,读取周杰伦专辑歌词数据集。 import time import math import numpy as np import torch from torch import nn, optim import torch.nn.functional as Fimport sys sys.path.append("..") device torch.d…

(pytorch-深度学习)通过时间反向传播

通过时间反向传播 介绍循环神经网络中梯度的计算和存储方法,即通过时间反向传播(back-propagation through time)。 正向传播和反向传播相互依赖。正向传播在循环神经网络中比较直观,而通过时间反向传播其实是反向传播在循环神经…

(pytorch-深度学习)门控循环单元(GRU)

门控循环单元(GRU) 循环神经网络中的梯度计算 当时间步数较大或者时间步较小时,循环神经网络的梯度较容易出现衰减或爆炸。虽然裁剪梯度可以应对梯度爆炸,但无法解决梯度衰减的问题。通常由于这个原因,循环神经网络在…

(pytorch-深度学习)长短期记忆(LSTM)

长短期记忆(LSTM) LSTM 中引入了3个门,即 输入门(input gate)遗忘门(forget gate)输出门(output gate)以及与隐藏状态形状相同的记忆细胞(某些文献把记忆细…

(pytorch-深度学习)深度循环神经网络

深度循环神经网络 循环神经网络只有一个单向的隐藏层,在深度学习应用里,我们通常会用到含有多个隐藏层的循环神经网络,也称作深度循环神经网络。 下图演示了一个有LLL个隐藏层的深度循环神经网络,每个隐藏状态不断传递至当前层的…

(pytorch-深度学习)双向循环神经网络

双向循环神经网络 一般,我们认为循环神经网络模型都是假设当前时间步是由前面的较早时间步的序列决定的,因此它们都将信息通过隐藏状态从前往后传递。 有时候,当前时间步也可能由后面时间步决定。 例如,当我们写下一个句子时&…

pytorch实现梯度下降、随机梯度下降-图像直观展示

深度学习与优化算法原理 优化函数与深度学习 在一个深度学习问题中,通常需要预先定义一个损失函数。有了损失函数以后,使用优化算法试图将其最小化。 在优化中,这样的损失函数通常被称作优化问题的目标函数(objective function…

小批量随机梯度下降

小批量随机梯度下降 在每一次迭代中,梯度下降使用整个训练数据集来计算梯度,因此它有时也被称为批量梯度下降(batch gradient descent)。 随机梯度下降在每次迭代中只随机采样一个样本来计算梯度。可以在每轮迭代中随机均匀采样…

动量法解决梯度下降的一些问题

动量法 目标函数有关自变量的梯度代表了目标函数在自变量当前位置下降最快的方向,因此,梯度下降也叫作最陡下降(steepest descent)。在每次迭代中,梯度下降根据自变量当前位置,沿着当前位置的梯度更新自变…

深度学习AdaGrad算法

AdaGrad算法 在一般的优化算法中,目标函数自变量的每一个元素在相同时间步都使用同一个学习率来自我迭代。 例如,假设目标函数为fff,自变量为一个二维向量[x1,x2]⊤[x_1, x_2]^\top[x1​,x2​]⊤,该向量中每一个元素在迭代时都使…

深度学习优化算法:RMSProp算法

RMSProp算法 在AdaGrad算法中,因为调整学习率时分母上的变量st\boldsymbol{s}_tst​一直在累加按元素平方的小批量随机梯度,所以目标函数自变量每个元素的学习率在迭代过程中一直在降低(或不变)。因此,当学习率在迭代…