(pytorch-深度学习)语言模型-学习笔记

语言模型

自然语言处理中最常见的数据是文本数据。我们可以把一段自然语言文本看作一段离散的时间序列。

假设一段长度为TTT的文本中的词依次为w1,w2,…,wTw_1, w_2, \ldots, w_Tw1,w2,,wT,那么在离散的时间序列中:

  • wtw_twt1≤t≤T1 \leq t \leq T1tT)可看作在时间步(time step)ttt的输出或标签。

给定一个长度为TTT的词的序列w1,w2,…,wTw_1, w_2, \ldots, w_Tw1,w2,,wT,语言模型将计算该序列的概率:
P(w1,w2,…,wT)P(w_1, w_2, \ldots, w_T)P(w1,w2,,wT)

语言模型可用于提升语音识别和机器翻译的性能。

语言模型的计算方式

假设序列w1,w2,…,wTw_1, w_2, \ldots, w_Tw1,w2,,wT中的每个词是依次生成的,即有:
P(w1,w2,…,wT)=∏t=1TP(wt∣w1,…,wt−1).P(w_1, w_2, \ldots, w_T) = \prod_{t=1}^T P(w_t \mid w_1, \ldots, w_{t-1}).P(w1,w2,,wT)=t=1TP(wtw1,,wt1).
这表示所有的词出现的概率只与其前面有哪些词有关

例如,一段含有4个词的文本序列的概率为:
P(w1,w2,w3,w4)=P(w1)P(w2∣w1)P(w3∣w1,w2)P(w4∣w1,w2,w3).P(w_1, w_2, w_3, w_4) = P(w_1) P(w_2 \mid w_1) P(w_3 \mid w_1, w_2) P(w_4 \mid w_1, w_2, w_3).P(w1,w2,w3,w4)=P(w1)P(w2w1)P(w3w1,w2)P(w4w1,w2,w3).

一个词在给定前几个词的情况下的条件概率就是语言模型参数

词的概率可以通过该词在训练数据集中的相对词频来计算,例如,P(w1)P(w_1)P(w1)可以计算为w1w_1w1在训练数据集中的词频(词出现的次数)与训练数据集的总词数之比。

根据条件概率定义,一个词在给定前几个词的情况下的条件概率也可以通过训练数据集中的相对词频计算。例如,P(w2∣w1)P(w_2 \mid w_1)P(w2w1)可以计算为w1,w2w_1, w_2w1,w2两词相邻的频率与w1w_1w1词频的比值,因为该比值即P(w1,w2)P(w_1, w_2)P(w1,w2)P(w1)P(w_1)P(w1)之比。

nnn元语法

当序列长度增加时,计算和存储多个词共同出现的概率的复杂度会呈指数级增加。nnn元语法通过马尔可夫假设(虽然并不一定成立)简化了语言模型的计算。

这里的马尔可夫假设是指一个词的出现只与前面nnn个词相关,即nnn阶马尔可夫链(Markov chain of order nnn)。

  • 如果n=1n=1n=1,那么有P(w3∣w1,w2)=P(w3∣w2)P(w_3 \mid w_1, w_2) = P(w_3 \mid w_2)P(w3w1,w2)=P(w3w2)

如果基于n−1n-1n1阶马尔可夫链,我们可以将语言模型改写为:
P(w1,w2,…,wT)≈∏t=1TP(wt∣wt−(n−1),…,wt−1).P(w_1, w_2, \ldots, w_T) \approx \prod_{t=1}^T P(w_t \mid w_{t-(n-1)}, \ldots, w_{t-1}) .P(w1,w2,,wT)t=1TP(wtwt(n1),,wt1).

很容易理解:

  • nnn较小时,nnn元语法往往不准确。
  • 而当nnn较大时,nnn元语法需要计算并存储大量的词频和多词相邻频率,计算复杂度会很高。

最重要的工作是找到一个方法在语言模型中更好地平衡以上这两点,设置较为合适的nnn的取值

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/507974.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

(pytorch-深度学习)循环神经网络

循环神经网络 在nnn元语法中,时间步ttt的词wtw_twt​基于前面所有词的条件概率只考虑了最近时间步的n−1n-1n−1个词。如果要考虑比t−(n−1)t-(n-1)t−(n−1)更早时间步的词对wtw_twt​的可能影响,需要增大nnn。 这样模型参数的数量将随之呈指数级增长…

配置jupyter-pytorch深度学习环境

配置jupyter-pytorch深度学习环境 安装anaconda3新建环境,命名为pytorch在虚拟环境里安装jupyter activate pytorch pip install jupyter安装可视化插件,ipywidgets,并且关联 pip install ipywidgets jupyter nbextension enable --py wid…

(pytorch-深度学习)SE-ResNet的pytorch实现

SE-ResNet的pytorch实现 残差块: class Resiual_block(nn.Module):def __init__(self, in, middle_out, out, kernel_size3, padding1):self.out_channel middle_outsuper(Resiual_block, self).__init__()self.shortcut nn.Sequential(nn.Conv2d(nin, nout, ke…

(pytorch-深度学习)循环神经网络的从零开始实现

循环神经网络的从零开始实现 首先,我们读取周杰伦专辑歌词数据集: import time import math import numpy as np import torch from torch import nn, optim import torch.nn.functional as F import sys sys.path.append("..") device tor…

(pytorch-深度学习)使用pytorch框架nn.RNN实现循环神经网络

使用pytorch框架nn.RNN实现循环神经网络 首先,读取周杰伦专辑歌词数据集。 import time import math import numpy as np import torch from torch import nn, optim import torch.nn.functional as Fimport sys sys.path.append("..") device torch.d…

(pytorch-深度学习)通过时间反向传播

通过时间反向传播 介绍循环神经网络中梯度的计算和存储方法,即通过时间反向传播(back-propagation through time)。 正向传播和反向传播相互依赖。正向传播在循环神经网络中比较直观,而通过时间反向传播其实是反向传播在循环神经…

(pytorch-深度学习)门控循环单元(GRU)

门控循环单元(GRU) 循环神经网络中的梯度计算 当时间步数较大或者时间步较小时,循环神经网络的梯度较容易出现衰减或爆炸。虽然裁剪梯度可以应对梯度爆炸,但无法解决梯度衰减的问题。通常由于这个原因,循环神经网络在…

(pytorch-深度学习)长短期记忆(LSTM)

长短期记忆(LSTM) LSTM 中引入了3个门,即 输入门(input gate)遗忘门(forget gate)输出门(output gate)以及与隐藏状态形状相同的记忆细胞(某些文献把记忆细…

(pytorch-深度学习)深度循环神经网络

深度循环神经网络 循环神经网络只有一个单向的隐藏层,在深度学习应用里,我们通常会用到含有多个隐藏层的循环神经网络,也称作深度循环神经网络。 下图演示了一个有LLL个隐藏层的深度循环神经网络,每个隐藏状态不断传递至当前层的…

(pytorch-深度学习)双向循环神经网络

双向循环神经网络 一般,我们认为循环神经网络模型都是假设当前时间步是由前面的较早时间步的序列决定的,因此它们都将信息通过隐藏状态从前往后传递。 有时候,当前时间步也可能由后面时间步决定。 例如,当我们写下一个句子时&…

pytorch实现梯度下降、随机梯度下降-图像直观展示

深度学习与优化算法原理 优化函数与深度学习 在一个深度学习问题中,通常需要预先定义一个损失函数。有了损失函数以后,使用优化算法试图将其最小化。 在优化中,这样的损失函数通常被称作优化问题的目标函数(objective function…

小批量随机梯度下降

小批量随机梯度下降 在每一次迭代中,梯度下降使用整个训练数据集来计算梯度,因此它有时也被称为批量梯度下降(batch gradient descent)。 随机梯度下降在每次迭代中只随机采样一个样本来计算梯度。可以在每轮迭代中随机均匀采样…

动量法解决梯度下降的一些问题

动量法 目标函数有关自变量的梯度代表了目标函数在自变量当前位置下降最快的方向,因此,梯度下降也叫作最陡下降(steepest descent)。在每次迭代中,梯度下降根据自变量当前位置,沿着当前位置的梯度更新自变…

深度学习AdaGrad算法

AdaGrad算法 在一般的优化算法中,目标函数自变量的每一个元素在相同时间步都使用同一个学习率来自我迭代。 例如,假设目标函数为fff,自变量为一个二维向量[x1,x2]⊤[x_1, x_2]^\top[x1​,x2​]⊤,该向量中每一个元素在迭代时都使…

深度学习优化算法:RMSProp算法

RMSProp算法 在AdaGrad算法中,因为调整学习率时分母上的变量st\boldsymbol{s}_tst​一直在累加按元素平方的小批量随机梯度,所以目标函数自变量每个元素的学习率在迭代过程中一直在降低(或不变)。因此,当学习率在迭代…

深度学习-参数与超参数

参数(parameters)/模型参数 由模型通过学习得到的变量比如权重、偏置 超参数(hyperparameters)/算法参数 根据经验进行设定,影响到权重和偏置的大小比如迭代次数、隐藏层的层数、每层神经元的个数、学习速率等

深度学习优化算法-AdaDelta算法

AdaDelta算法 除了RMSProp算法以外,另一个常用优化算法AdaDelta算法也针对AdaGrad算法在迭代后期可能较难找到有用解的问题做了改进 [1]。 不一样的是,AdaDelta算法没有学习率这个超参数。 它通过使用有关自变量更新量平方的指数加权移动平均的项来替代…

深度学习优化算法-Adam算法

Adam算法 Adam算法在RMSProp算法基础上对小批量随机梯度也做了指数加权移动平均。Adam算法可以看做是RMSProp算法与动量法的结合。 算法内容 Adam算法使用了动量变量vt\boldsymbol{v}_tvt​和RMSProp算法中小批量随机梯度按元素平方的指数加权移动平均变量st\boldsymbol{s}_…

pytorch命令式和符号式混合编程

命令式和符号式编程 命令式编程 命令式编程使用编程语句改变程序状态,如下: def add(a, b):return a bdef fancy_func(a, b, c, d):e add(a, b)f add(c, d)g add(e, f)return gfancy_func(1, 2, 3, 4) # 10在运行语句e add(a, b)时,P…

深度学习-自动并行计算

自动并行计算 异步计算 默认情况下,PyTorch中的 GPU 操作是异步的。当调用一个使用 GPU 的函数时,这些操作会在特定的设备上排队但不一定会在稍后立即执行。这就使我们可以并行更多的计算,包括 CPU 或其他 GPU 上的操作。 一般情况下&…