利用基于GPU的AI模拟一个现实宇宙 仅需36分钟

来源:The Next Web

编译:科技行者

科学家已经习惯于使用超级计算机处理宇宙学领域的海量数据,最近卡耐基梅隆大学的研究团队找到一种新方法,可以使用常规的机器学习技术(与AI绘画或作曲拥有同样的底层设计),在图形处理单元(GPU)上实现高级模拟能力。

这个名为“无人在此”(This Person Does Not Exist)的研究项目,尝试使用大家熟知的硬件与神经网络技术以高分辨率形式模拟我们的现实宇宙。这项极具前瞻性的研究,也许会彻底改变我们认识宇宙与理解物理定律的方式。

根据研究小组的说法,使用传统方法在单一处理核心上运行宇宙学模拟大约需要23天。因此,研究人员倾向于使用超级计算机完成此类仿真任务。之所以如此困难,是因为物理学中仍充斥着种种悬而未决的根本问题。我们找不到一套能够解释整个宇宙的统一规则,科学家们也不清楚如何将经典物理学定律同量子领域中观察到的现象联系起来。

为此,我们必须努力探索。在涉及到预测宇宙中暗物质数量等难题时,科学家必须尝试不同的预设数值。只有这样反复试错,才能最终得出更接近真实情况的结果。科学家们开始着手模拟,并将发现与太空望远镜及其他观测结果数据源进行核对,之后再模拟、再核对,如此反复。

问题所在

超级计算机的运行成功率极高,租用一个小时往往就要花掉数千美元。与单一GPU的低功耗水平相比,超级计算机简直就像是个熊熊燃烧的大火炉。

所以对于这类需要反复试验的问题,超级计算机显然不是最好的解决方案。

路在何方

研究人员将问题归结为:目前,我们可以先对宇宙中的小块图像进行高分辨率模拟,并在大型模拟区域内转为低分辨率图像模拟。至于大型区域的高分辨率图像处理必须慎而又慎,因为这会耗费掉大量时间、精力与能源。

但这样的现状,相当于在模拟整个宇宙时设下一道不可逾越的鸿沟。贯通天堑的桥梁,就是AI。

卡耐基梅隆大学团队选择的方案并非教导AI以程序化方式模拟整个宇宙(这仍然可能设定无穷多个变量),而是直接以高分辨率形式进行图像模拟。

这大大提升了模拟效率。具体提升了多少?卡耐基梅隆大学的Jocelyn Duffy表示:经过训练的代码能够获取完整的低分辨率模型并执行超高分辨率模拟,将其中包含的粒子数量扩展达512倍。对于宇宙当中直径约5亿光年、包含1.34亿个粒子的区域,原有方法需要560个小时才能在单一处理核心上完成高分辨率模拟;而使用新方法后,研究人员仅仅需要36分钟。在向模拟流程中添加更多粒子后,效果变得更为显著。对于包含1340亿个粒子的“千亿”(相较于上一用例)宇宙,研究人员的新方法在单一图形处理单元中只需要16个小时即可处理完成。如果使用原有方法,这种大小及分辨率的模拟必须配合专用的超级计算机,处理时长也将达到数月之久。

这不是说AI真能“理解”我们所无法企及的宇宙空间。相反,它只是在以令人信服的方式将低分辨率模拟图像扩充为高分辨率形式,帮助科学家以更少的时间、精力与能源投入获得可靠的模拟结果。

从本质上讲,这就像是为AI提供电影的分镜草稿,再由它输出实拍影片的具体样貌。虽然还不够完善,但已经可以在一定的保真水平下省去真实拍摄的麻烦。

实际过程当然要比本文的描述复杂得多。但好在模拟出的宇宙图像比较容易验证,我们可以直接把结果跟观测数据进行比较。唯一的谜团,是我们并不知道AI模型是如何完成填充的。

这项最新成果,让宇宙学模拟从超级计算机的专利变成了完全可以运行在游戏PC上的“小case”,研究人员也可以借此快速测试自己的灵感、推动模拟能力的大众化转型。

从乐观的角度来说,这项研究有望彻底改变我们对现实宇宙的观察方式。如果运气好,我们也许能更好地对暗物质、引力效应甚至是宇宙起源作出原理性解释。

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/484676.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

第七章:集成学习(利用AdaBoost元算法...)

---恢复内容开始--- 集成学习其实不能算一个算法,应该算是一种框架,集百家之长。集成算法具体有Bagging与Boosting两种大类。两者区别: 1)Bagging是并行的,它就好比找男朋友,美女选择择偶对象的时候,会问几…

GPT-3难以复现,为什么说PyTorch走上了一条“大弯路”?

来源:OneFlow 投稿责编:欧阳姝黎2020 年,最轰动的 AI 新闻莫过于 OpenAI 发布的 GPT-3 了。它的1750亿参数量及其在众多NLP任务上超过人类的出众表现让人们开始坚信:大模型才是未来。但与之带来的问题是,训练超大模型所…

生小兔问题

生小兔问题🐰 本文研究生小兔问题。使用代数模型,在考虑生育情况变化的情况下,求解兔子/白鼠的数目变化。 第1章 问题重述 生小兔问题 兔子出生后能够存活12个月,从第7月开始生小兔,7、8两月每对兔子生1对小兔/月&am…

光刻机龙头ASML回应韩国建厂:无需过度解读

来源: 深城物联近期,韩国在半导体领域的动作不小。先是韩国总统文在寅公开宣布韩国将斥资4500亿美元建设全球最大芯片制造基地,之后韩国又向全球光刻机龙头大厂阿斯麦(ASML)抛出了橄榄枝,请ASML在韩国建立再…

Spring入门之一-------实现一个简单的IoC

一、场景模拟 public interface Human {public void goHome();} Human:人类,下班了该回家啦public interface Car {void start();void stop();void turnLeft();void turnRight();} Car:汽车,可以启动、停止、左转、右转public cla…

常染色体的隐性疾病数学建模(代数模型)

常染色体的隐性疾病数学建模(代数模型) 摘要:本文研究随交配代数的增长,常染色体隐性疾病的基因分布变化问题。使用代数模型,在正常人不与显性患者交配,但隐性患者可与正常人、隐性患者交配的情况下时&…

一文拆解中国火星车着陆全过程

天问一号着陆器降落火星(艺术图)来源: 深城物联 经过惊心动魄的九分钟,中国首个火星车祝融号成功穿越火星大气层,着陆于火星北半球的乌托邦平原南端。自此,继苏联和美国之后,中国成为了第三个成…

第二章 物理层 4 奈氏准则和香农定理 [计算机网络笔记]

第二章 物理层 4 奈氏准则和香农定理 本笔记参考书目: 计算机网络(第8版)谢希仁2021王道计算机网络视频公开课 本节重点: 奈氏准则和香农定理的计算/适用范围 转载请注明文章来源! 失真 失真的影响因素&#xff1…

谈谈数学之现在与未来

文章来源:好玩的数学来源:《数学教学通讯》2005年3月(上半月)(总第220期)作者:王元(中国科学院数学与系统科学研究院)数学科学是什么?我们首先谈谈数学科学是…

SQL Server创建Job, 实现执行相同脚本而产生不同作业计划的探究

1 . 背景描述 本公司的SQL Server 服务器近百台,为了收集服务器运行的状态,需要在各个实例上部署监控Job,将收集到的信息推送到中央管理服务器。 收集的信息主要包括:慢查询、阻塞、资源等待、Connection_Trace log 、Job执行状态…

基于线性常微分方程的我国某省艾滋病传播的数学模型建立和预测分析

基于线性常微分方程的我国某省艾滋病传播的数学模型建立和预测分析 如有错误,欢迎指正!转载需注明出处和作者信息!©️Sylvan Ding 摘要 艾滋病(AIDS)又称获得性免疫缺陷综合征,由人类免疫缺陷病毒&…

神经网络的持续终身学习综述论文

来源:专知人和高级动物在整个生命中不断获取、微调和转让知识和技能。这种能力,称为lifelong learning,是由一系列神经认知机制协调的过程,这些机制共同促进了sensorimotor技能的发展以及对长期记忆的巩固和检索。因此对于计算系统…

Pensando Distributed Services Architecture [Pensando 分布式服务架构] - 翻译

Pensando Distributed Services Architecture [Pensando 分布式服务架构] - 翻译 转载需注明文章出处:©️ Sylvan Ding Source: M. Galles and F. Matus, “Pensando Distributed Services Architecture” in IEEE Micro, vol. 41, no. 02, pp. 43-49, 2021. D…

反思脑机接口技术:机器真的能控制我们的大脑吗?

来源:AI科技评论作者:R. Douglas Fields编译:陈彩娴猛烈的公牛在冲锋的途中锁定了双腿。它将双蹄扎进地下,在与之搏斗的人类参赛选手被刺伤之前停了下来。这个人类参赛选手不是职业斗牛士,而是一名西班牙神经科学家&am…

C4.5决策树生成算法完整版(Python),连续属性的离散化, 缺失样本的添加权重处理, 算法缺陷的修正, 代码等

C4.5决策树生成算法完整版(Python) 转载请注明出处:©️ Sylvan Ding ID3算法实验 决策树从一组无次序、无规则的事例中推理出决策树表示的分类规则,采用自顶向下的递归方式,在决策树的内部节点进行属性值的比较并根据不同的属性值判断从…

缅怀袁隆平院士:一颗稻谷里的爱国情怀

来源:科学网5月22日,《中国科学报》从中国工程院获悉,“共和国勋章”获得者、中国工程院院士袁隆平,因多器官功能衰竭,于2021年5月22日13时07分在长沙逝世,享年91岁。袁隆平对于国人来说,袁隆平…

k-Means——经典聚类算法实验(Matlab实现)

聚类算法—k-Means实验 k-平均(k-Means),也被称为k-均值,是一种得到最广泛使用的聚类算法[1]. k-Means算法以k为参数,把n个对象分为k个簇,使得簇内具有较高的相似度。 实验目的 了解常用聚类算法及其优缺…

这5个数学猜想最早在30年前提出,如今AI证明它们都错了

来源:AI科技评论编译:琰琰编辑:青暮近日,以色列特拉维夫大学研究团队在预印论文库提交了一篇名为“Constructions in combinatorics via neural networks“的论文,在这篇论文中,研究人员通过机器学习算法证…

Java AQS 核心数据结构-CLH 锁及优化

Java AQS 核心数据结构-CLH 锁 什么是CLH锁 CLH 锁是对自旋锁的一种改进,有效的解决了以上的两个缺点。 第一个是锁饥饿问题。在锁竞争激烈的情况下,可能存在一个线程一直被其他线程”插队“而一直获取不到锁的情况。第二是性能问题。在实际的多处理上…

M/M/m排队模型 (单队列多服务台并联服务模型)数学建模: 基于生灭过程的理论计算和基于事件推进的Matlab模拟仿真思路

M/M/m排队模型 (单队列多服务台并联服务模型) 数学建模: 基于生灭过程的理论计算和基于事件推进的Matlab模拟仿真思路 原创文章,转载文章请注明出处:©️Sylvan Ding 🎉🎉🎉 摘要 本文研究M/M/m单队列多服务台并…