跟小伙伴们做了个高效刷论文的小站

好久木有在知乎冒泡了,不知道还能不能出现在大家的timeline上哇QAQ

正文开始之前还是先习惯性的碎碎念一下。前段时间换了研究方向,重新pick了问答和检索,为了追上相关问题的最新进展,就顾不上写文的刷了一堆paper,加上几件事情的从0到1确实费了一些精力,因此停更了好几个月。

这几个月的时间里,大部分为数不多的业余精力都放在了运营「卖萌屋」上,跟小伙伴们努力维持一些有趣有料的原创输出,小屋也更好看啦。另一些精力就是放在本文要讲的事情上啦!几个算法工程师强行上阵web前后端甚至UI,做了一个帮助大家高效率刷paper的学术小站。一顿踩坑之后,终于近期把小站收拾的“看起来像个样子了”(´Д` )

小站地址!

arxiv.xixiaoyao.cn

很好记有木有( ̄∇ ̄)别忘了传送回来赞赞赞!

卖萌屋学术站的诞生

顾名思义,学术站就是为学术信息而生嗒!

虽然AI行业变得越来越卷,但CV、NLP等热点方向依然在持续高速的发(灌)展(水)中,经常涌现出一些有趣的paper,可能哪天就被借鉴用于解决手上的问题了。所以入门后,养成追前沿、刷paper的习惯是非常非常必要的,无论你是在学术界还是工业界。

不过由于众所周知的某墙,以及某些不是很好用的国外服务,导致新手刷paper的效率很低,又经常分不清哪些paper(可能)含金量更高一些,哪些疑似不可靠的灌水,很容易出现费力不讨好的情况,受挫之后又开始选择咀嚼各大小媒体的论文解读了。以卖萌屋为例,虽然每周能为大家递上两三篇原创已经看起来很高产了,但是实话讲,那些我们发现的有趣的paper里,最终能呈现到粉丝面前的可能只有2~3成。毕竟,理解容易生成难哇。。。

所以本着授人以鱼不如授人以渔的想法,就跟小伙伴们把自己平时刷paper的服务努力优化了一下,开放出来啦~希望能帮到各位爱追AI前沿的小伙伴们。

小站的目标

就是为了方便大家更加高效便捷的获取CV、NLP、IR等领域的学术信息啦(后面悄咪咪观察一下,用的人多的话再考虑加研究方向)。这里的高效便捷体现在几方面吧

  1. 不用跟那个什么墙斗智斗勇了,访问速度很快的
  2. 抽出来了一些paper质量相对比较高的机构名和学术会议/期刊名,如果精力有限,可以优先刷刷这些,如下图所示,一篇paper录用的会议名会在标题上放用橙色的tag标出,机构名会用蓝色的tag标出。比如图里这篇《TeaForN:Teacher-Forcing with N-grams》的paper就是今天刚放出来的Google发表于EMNLP20的论文(快夸夸我们

v2-b00682951f3828c4343c335189086574_b.jpg

不过,这种抽取会议名和机构名置顶的做法也会导致一些公平性问题。有的好paper确实没投顶会也不是来自大厂或名校,就容易被淹没掉。对于这个为求便捷导致的公平性问题,我们也在努力优化中,后续会同时通过NLP和排序算法优化,以及人的力量来努力不让金子埋没(认真脸

建议&吐槽

学术站右侧有专门的交(吐)流(槽)群,很懒的小伙伴也可以直接在本文评论区留言~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/479923.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

模拟进化与遗传算法

遗传算法是目前研究得最为广泛的一类模拟进化算法。 假定考虑全局优化问题(P)。遗传算法基于以下两条基本策略求解问题: 对于给定的目标函数F,它使用F的任一适应性函数(换言之,一个值域非负、…

消息中间件系列(六):什么是流量削峰?如何解决秒杀业务的削峰场景

流量削峰的由来 主要是还是来自于互联网的业务场景,例如,马上即将开始的春节火车票抢购,大量的用户需要同一时间去抢购;以及大家熟知的阿里双11秒杀, 短时间上亿的用户涌入,瞬间流量巨大(高并发…

论文浅尝 | 基于深度序列模型的知识图谱补全

本文转载自公众号:DI数据智能。 Learning to Complete Knowledge Graphs with Deep Sequential Models作者:郭凌冰、张清恒、胡伟、孙泽群、瞿裕忠单位:南京大学供稿:胡伟引用L. Guo, Q. Zhang, W. Hu, Z. Sun, & Y. Qu. …

拨开算力的迷雾:聊聊不同 GPU 计算能力的上限

文 | 卜居知乎编 | 兔子酱通过深入了解自己手头 GPU 的计算能力上限,能够在买新卡时做出更理性判断。本文深入GPU架构,重点介绍了其中的ampere架构。另外,作者还对比了不同GPU之间的峰值计算能力,增加读者对硬件资源的了解。前言2…

LeetCode 20. 有效的括号(栈)

文章目录1. 题目信息2. 解题1. 题目信息 给定一个只包括 ‘(’,’)’,’{’,’}’,’[’,’]’ 的字符串,判断字符串是否有效。 有效字符串需满足: 左括号必须用相同类型的右括号闭合。 左括…

消息中间件系列(八):Kafka、RocketMQ、RabbitMQ等的优劣势比较

在高并发业务场景下,典型的阿里双11秒杀等业务,消息队列中间件在流量削峰、解耦上有不可替代的作用。 之前介绍了MQ消息队列的12点核心原理总结,以及如何从0到1设计一个MQ消息队列,以及RPC远程调用和消息队列MQ的区别 今天我们一…

论文浅尝 | 一种用于多关系问答的可解释推理网络

论文笔记整理:谭亦鸣,东南大学博士生,研究方向为跨语言知识图谱问答。来源:COLING 2018链接:https://www.aclweb.org/anthology/C18-1171问题背景与动机多关系问答(multi-relationquestion answering&#…

蚁群优化算法 ACO

群体智能(swarm intelligence) 定义: 由单个复杂个体完成的任务可由大量简单个体组成的群体合作完成,而后者往往更具有健壮性、灵活性等优势。在没有集中控制,不提供全局模型的前提下,为寻找复杂问题解决…

量化投资交易 vn.py

前言:当初接触到vnpy,一开始当然是按照该项目在GitHub上的指南,开始安装,配置,阅读Wiki,但是作为一个python新手,并不能马上利用vnpy来写策略回测甚至实盘。所以我决定还是从源码看起&#xff0…

掌握神经网络,我应该学习哪些至关重要的知识点?

人工智能作为计算机科学领域的一个分支,在互联网和大数据的时代浪潮中显现出其巨大的潜力和蓬勃的活力,类似电子医生、无人驾驶等新名词纷纷涌现。人工智能凭借着它无与伦比的发展优势,推动了各大产业和技术的革命与创新,使得生产…

LeetCode 32. 最长有效括号(栈DP)

文章目录1. 题目信息2. 栈 解题3. 动态规划 解题1. 题目信息 给定一个只包含 ‘(’ 和 ‘)’ 的字符串,找出最长的包含有效括号的子串的长度。 示例 1:输入: "(()" 输出: 2 解释: 最长有效括号子串为 "()" 示例 2:输入: ")()())" 输…

消息中间件系列(四):消息队列MQ的特点、选型、及应用场景详解

前面集中谈了分布式缓存Redis系列: 高并发架构系列:分布式锁的由来、特点、及Redis分布式锁的实现详解 高并发架构系列:Redis并发竞争key的解决方案详解 高并发架构系列:Redis缓存和MySQL数据一致性方案详解 Redis的高可用详解…

基金定投

https://www.zhihu.com/question/19909886 相信我,这篇攻略能让你彻底搞懂基金,每年大概率能赚10%左右的收益!基金定投核心要搞懂两个问题:买什么基金,什么时候买。今天我给大家一篇文章讲透这两个问题!我说…

卖萌屋学术站发布!通往高效刷论文之路

文 | 夕小瑶编 | 兔子酱学术站诞生好久没有冒泡啦,大家还记得雁栖湖畔的夕小瑶吗!(划掉(*/ω\*)趁着国庆假期,跟卖萌屋小伙伴们终于把拖延已久的《Arxiv神器》翻新了,零零星星做了几个月,最近终…

消息中间件系列(五):MQ消息队列的12点核心原理总结

消息队列已经逐渐成为分布式应用场景、内部通信、以及秒杀等高并发业务场景的核心手段,它具有低耦合、可靠投递、广播、流量控制、最终一致性 等一系列功能。 无论是 RabbitMQ、RocketMQ、ActiveMQ、Kafka还是其它等,都有的一些基本原理、术语、机制等&…

征稿 | 2019年全国知识图谱与语义计算大会(CCKS2019)投稿时间延长

全国知识图谱与语义计算大会(CCKS: China Conference on Knowledge Graph and Semantic Computing)由中国中文信息学会语言与知识计算专业委员会组织和承办。全国知识图谱与语义计算大会是两个全国性会议的合并:中文知识图谱研讨会the Chines…

LeetCode 641. 设计循环双端队列

文章目录1. 题目信息2. 解题1. 题目信息 设计实现双端队列。 你的实现需要支持以下操作: MyCircularDeque(k):构造函数,双端队列的大小为k。 insertFront():将一个元素添加到双端队列头部。 如果操作成功返回 true。 insertLast()&#xff…

代码逆流成河,深入C++如何又快又有效?

虽然编程语言有很多,但在需要顶级性能的项目上,基本都会使用C。尤其是机器人、自动驾驶、AI等嵌入和实时系统,都是C的主要应用方向,在这种层面,几乎没有竞争者。比如熊厂的搜索引擎、推荐引擎等核心产品,鹅…

论文浅尝 | 混合注意力原型网络的含噪音少样本的关系分类

论文笔记整理:余海阳,浙江大学硕士,研究方向为知识图谱、自然语言信息抽取。链接:https://www.aaai.org/Papers/AAAI/2019/AAAI-GaoTianyu.915.pdf动机现有的关系分类方法主要依赖于远程监控(DS)&#xff0…

消息中间件系列(七):如何从0到1设计一个消息队列中间件

消息队列作为系统解耦,流量控制的利器,成为分布式系统核心组件之一。 如果你对消息队列背后的实现原理关注不多,其实了解消息队列背后的实现非常重要。 不仅知其然还要知其所以然,这才是一个优秀的工程师需要具备的特征。 今天…