22.OpenCV轮廓匹配原理介绍与使用

OpenCV轮廓匹配原理介绍与使用

1. 轮廓匹配的基本概念

轮廓匹配(Contour Matching)是计算机视觉中的一种重要方法,主要用于比较两个轮廓的相似性。它广泛应用于目标识别、形状分析、手势识别等领域。

在 OpenCV 中,轮廓匹配主要基于形状匹配算法,其中 matchShapes 是核心函数。该函数用于计算两个轮廓之间的相似度,返回一个数值,该数值越小表示两个轮廓越相似。

2. 轮廓匹配的算法原理

Hu矩(Hu Moments)是由Ming-Kuei Hu在1962年提出。OpenCV 采用 Hu 矩(Hu Moments)进行轮廓匹配。Hu 矩是一组不变矩,可以用于描述图像的形状特征,并且具有旋转、缩放和平移不变性。Hu矩是通过对图像的归一化中心矩进行特定的线性组合得到的。具体而言,它们是基于二阶和三阶的归一化中心矩计算的。

Hu 矩由 7 个不变矩组成:

I 1 = η 20 + η 02 I 2 = ( η 20 − η 02 ) 2 + 4 η 11 2 I 3 = ( η 30 − 3 η 12 ) 2 + ( 3 η 21 − η 03 ) 2 I 4 = ( η 30 + η 12 ) 2 + ( η 21 + η 03 ) 2 I 5 = ( η 30 − 3 η 12 ) ( η 30 + η 12 ) [ ( η 30 + η 12 ) 2 − 3 ( η 21 + η 03 ) 2 ] + ( 3 η 21 − η 03 ) ( η 21 + η 03 ) [ 3 ( η 30 + η 12 ) 2 − ( η 21 + η 03 ) 2 ] I 6 = ( η 20 − η 02 ) [ ( η 30 + η 12 ) 2 − ( η 21 + η 03 ) 2 ] + 4 η 11 ( η 30 + η 12 ) ( η 21 + η 03 ) I 7 = ( 3 η 21 − η 03 ) ( η 30 + η 12 ) [ ( η 30 + η 12 ) 2 − 3 ( η 21 + η 03 ) 2 ] − ( η 30 − 3 η 12 ) ( η 21 + η 03 ) [ 3 ( η 30 + η 12 ) 2 − ( η 21 + η 03 ) 2 ] \begin{align*}I_1 &= \eta_{20} + \eta_{02} \\I_2 &= (\eta_{20} - \eta_{02})^2 + 4\eta_{11}^2 \\I_3 &= (\eta_{30} - 3\eta_{12})^2 + (3\eta_{21} - \eta_{03})^2 \\I_4 &= (\eta_{30} + \eta_{12})^2 + (\eta_{21} + \eta_{03})^2 \\I_5 &= (\eta_{30} - 3\eta_{12})(\eta_{30} + \eta_{12})\left[(\eta_{30} + \eta_{12})^2 - 3(\eta_{21} + \eta_{03})^2\right] \\&\quad + (3\eta_{21} - \eta_{03})(\eta_{21} + \eta_{03})\left[3(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2\right] \\I_6 &= (\eta_{20} - \eta_{02})\left[(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2\right] \\&\quad + 4\eta_{11}(\eta_{30} + \eta_{12})(\eta_{21} + \eta_{03}) \\I_7 &= (3\eta_{21} - \eta_{03})(\eta_{30} + \eta_{12})\left[(\eta_{30} + \eta_{12})^2 - 3(\eta_{21} + \eta_{03})^2\right] \\&\quad - (\eta_{30} - 3\eta_{12})(\eta_{21} + \eta_{03})\left[3(\eta_{30} + \eta_{12})^2 - (\eta_{21} + \eta_{03})^2\right]\end{align*} I1I2I3I4I5I6I7=η20+η02=(η20η02)2+4η112=(η303η12)2+(3η21η03)2=(η30+η12)2+(η21+η03)2=(η303η12)(η30+η12)[(η30+η12)23(η21+η03)2]+(3η21η03)(η21+η03)[3(η30+η12)2(η21+η03)2]=(η20η02)[(η30+η12)2(η21+η03)2]+4η11(η30+η12)(η21+η03)=(3η21η03)(η30+η12)[(η30+η12)23(η21+η03)2](η303η12)(η21+η03)[3(η30+η12)2(η21+η03)2]

通过计算 Hu 矩的值,OpenCV 使用 matchShapes 进行轮廓匹配.

需要注意的是,虽然Hu矩对常见的几何变换具有不变性,但在实际应用中,噪声、遮挡和分割质量等因素可能影响其稳定性。因此,在处理实际问题时,需综合考虑这些因素对Hu矩计算的影响。

3. matchShapes 函数介绍

3.1 函数原型

double matchShapes(InputArray contour1, InputArray contour2, int method, double parameter);

3.2 参数说明

  • contour1:第一个轮廓(vector<Point> 格式)。
  • contour2:第二个轮廓(vector<Point> 格式)。
  • method:匹配方法,可选值:
    • CONTOURS_MATCH_I1 d ( I ) = ∑ ∣ 1 I i ( 1 ) − 1 I i ( 2 ) ∣ d(I)=\sum\begin{vmatrix} \frac{1}{I_i^{(1)}}-\frac{1}{I_i^{(2)}} \end{vmatrix} d(I)= Ii(1)1Ii(2)1
    • CONTOURS_MATCH_I2 d ( I ) = ∣ I i ( 1 ) − I i ( 2 ) ∣ d(I)=\begin{vmatrix}I_i^{(1)}-I_i^{(2)}\end{vmatrix} d(I)= Ii(1)Ii(2)
    • CONTOURS_MATCH_I3 d ( I ) = ∑ ∣ 1 i 1 ( 1 ) − 1 i i ( 2 ) ∣ d(I)=\sum\begin{vmatrix} \frac{1}{i_1^{(1)}}-\frac{1}{i_i^{(2)}} \end{vmatrix} d(I)= i1(1)1ii(2)1
  • parameter:该参数在当前版本未使用,通常填 0

3.3 返回值

返回两个轮廓之间的相似性分数,数值越小,轮廓越相似

4. 轮廓匹配

4.1示例代码1:直接匹配

#include <opencv2/opencv.hpp>
#include <iostream>
#include <vector>using namespace cv;
using namespace std;int main() 
{// 1. 读取输入图像和模板图像,并转换为灰度图Mat inputImg = imread("E:/image/pic1.png");Mat templateImg = imread("E:/image/templ.png");if (inputImg.empty() || templateImg.empty()) {cerr << "图像加载失败!" << endl;return -1;}Mat grayInput, grayTemplate;cvtColor(inputImg, grayInput, COLOR_BGR2GRAY);cvtColor(templateImg, grayTemplate, COLOR_BGR2GRAY);// 2. 对图像应用阈值处理得到二值图像Mat binaryInput, binaryTemplate;threshold(grayInput, binaryInput, 0, 255, THRESH_BINARY_INV | THRESH_OTSU);threshold(grayTemplate, binaryTemplate, 0, 255, THRESH_BINARY_INV | THRESH_OTSU);// 3. 检测轮廓vector<vector<Point>> contoursInput, contoursTemplate;vector<Vec4i> hierarchy;findContours(binaryInput, contoursInput, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);findContours(binaryTemplate, contoursTemplate, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);// 4. 假设模板图像只包含一个主要轮廓,取第一个轮廓作为模板if (contoursTemplate.empty()) {cerr << "模板轮廓检测失败!" << endl;return -1;}cout << contoursTemplate.size();vector<Point> templateContour = contoursTemplate[0];// 5. 遍历输入图像中的所有轮廓,计算与模板轮廓的匹配度for (size_t i = 0; i < contoursInput.size(); i++) {double matchScore = matchShapes(templateContour, contoursInput[i], CONTOURS_MATCH_I1, 0);cout << "轮廓 " << i << " 匹配分数: " << matchScore << endl;// 在输入图像上绘制轮廓并标注匹配分数if (matchScore<0.05){drawContours(inputImg, contoursInput, static_cast<int>(i), Scalar(0, 255, 0), 2);}Moments m = moments(contoursInput[i]);int cx = static_cast<int>(m.m10 / m.m00);int cy = static_cast<int>(m.m01 / m.m00);putText(inputImg, format("%.2f", matchScore), Point(cx, cy), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 0, 255), 1);}//6. 显示结果\n   imshow("输入图像轮廓匹配", inputImg);imshow("模板图像", templateImg);waitKey(0);return 0;
}

在这里插入图片描述

绿色为找到的轮廓

4. 2示例代码2:hu距匹配

#include <opencv2/opencv.hpp>
#include <iostream>
#include <vector>using namespace cv;
using namespace std;int main()
{// 1. 读取输入图像和模板图像,并转换为灰度图Mat inputImg = imread("E:/image/pic1.png");Mat templateImg = imread("E:/image/templ.png");if (inputImg.empty() || templateImg.empty()) {cerr << "图像加载失败!" << endl;return -1;}Mat grayInput, grayTemplate;cvtColor(inputImg, grayInput, COLOR_BGR2GRAY);cvtColor(templateImg, grayTemplate, COLOR_BGR2GRAY);// 2. 对图像应用阈值处理得到二值图像Mat binaryInput, binaryTemplate;threshold(grayInput, binaryInput, 0, 255, THRESH_BINARY_INV | THRESH_OTSU);threshold(grayTemplate, binaryTemplate, 0, 255, THRESH_BINARY_INV | THRESH_OTSU);// 3. 检测轮廓vector<vector<Point>> contoursInput, contoursTemplate;vector<Vec4i> hierarchy;findContours(binaryInput, contoursInput, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);findContours(binaryTemplate, contoursTemplate, hierarchy, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);// 4. 假设模板图像只包含一个主要轮廓,取第一个轮廓作为模板if (contoursTemplate.empty()) {cerr << "模板轮廓检测失败!" << endl;return -1;}cout << contoursTemplate.size();vector<Point> templateContour = contoursTemplate[0];Moments mTemplate = moments(contoursTemplate[0]);Mat huTemplate;HuMoments(mTemplate, huTemplate);// 5. 遍历输入图像中的所有轮廓,计算与模板轮廓的匹配度for (size_t i = 0; i < contoursInput.size(); i++) {// 在输入图像上绘制轮廓并标注匹配分数Moments m = moments(contoursInput[i]);Mat hu;HuMoments(m, hu);double matchScore = matchShapes(hu, huTemplate, CONTOURS_MATCH_I1, 0);cout << "轮廓 " << i << " 匹配分数: " << matchScore << endl;if (matchScore < 0.005){drawContours(inputImg, contoursInput, static_cast<int>(i), Scalar(0, 255, 0), 2);}int cx = static_cast<int>(m.m10 / m.m00);int cy = static_cast<int>(m.m01 / m.m00);putText(inputImg, format("%.2f", matchScore), Point(cx, cy), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 0, 255), 1);}//6. 显示结果\n   imshow("输入图像轮廓匹配", inputImg);imshow("模板图像", templateImg);waitKey(0);return 0;
}

在这里插入图片描述

5. 轮廓匹配的应用场景

OpenCV 的 matchShapes 通过 Hu 矩计算轮廓的相似性,是一种高效的轮廓匹配方法。适用于各种形状分析任务,在实际应用中,可以结合其他特征进一步优化匹配结果。
常用场景

  1. 目标识别:如手写字符识别、手势识别,车牌识别等。
  2. 工业检测:用于检测物品形状偏差。
  3. 医学影像分析:对比医学影像中的病变轮廓。
  4. 形状检索:在数据库中寻找相似形状的对象。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/900507.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

oracle 快速创建表结构

在 Oracle 中快速创建表结构&#xff08;仅复制表结构&#xff0c;不复制数据&#xff09;可以通过以下方法实现&#xff0c;适用于需要快速复制表定义或生成空表的场景 1. 使用 CREATE TABLE AS SELECT (CTAS) 方法 -- 复制源表的全部列和数据类型&#xff0c;但不复制数据 C…

若依原理笔记

代码生成器 源码分析 查询数据库列表 导入表结构 生成代码 修改generator.yml配置文件 代码生成器增强 Velocity模版引擎 基础语法-变量 Lombok集成 E:\javaProject\dkd-parent\dkd-generator\src\main\resources\vm\java\domain.java.vm package ${packageName}.domain;#fo…

Ansible的使用

##### Ansible使用环境 - 控制节点 - 安装Ansible软件 - Python环境支持&#xff1a;Python>2.6 - 必要的模块&#xff1a;如PyYAML等 - 被控节点 - 启用SSH服务 - 允许控制节点登录&#xff0c;通常设置免密登录 - Python环境支持 http://www.ansible.com/ …

C++ 提高编程:模板与 STL 深度剖析

摘要&#xff1a;本文深入探讨 C 提高编程中的模板编程与标准模板库&#xff08;STL&#xff09;相关内容。详细阐述模板编程中函数模板和类模板的概念、语法、特性及应用案例&#xff1b;对 STL 的诞生背景、基本概念、六大组件进行剖析&#xff0c;并对常用容器、函数对象、常…

C++(类模板的运用)

使用vector实现一个简单的本地注册登录系统 注册&#xff1a;将账号密码存入vector里面&#xff0c;注意防重复判断 登录&#xff1a;判断登录的账号密码是否正确 #include <iostream> #include <vector> #include <fstream> #include <sstream> usi…

【大模型】DeepSeek+蓝耕MaaS平台+海螺AI生成高质量视频实战详解

目录 一、前言 二、蓝耘智能云MaaS平台介绍 2.1 蓝耘智算平台是什么 2.2 平台优势 2.3 平台核心能力 三、海螺AI视频介绍 3.1 海螺AI视频是什么 3.2 海螺AI视频主要功能 3.3 海螺AI视频应用场景 3.4 海螺AI视频核心优势 3.5 项目git地址 四、蓝耘MaaS平台DeepSeek海…

接口自动化学习二:session自动管理cookie

session自动管理cookie&#xff1a; cookie中的数据&#xff0c;都是session提供的 实现步骤&#xff1a; 1.创建session对象&#xff1b;my_sessionrequests.Session() 2.使用session实例&#xff0c;调用get方法&#xff0c;发送获取验证码请求&#xff08;不需要提取cookie&…

C++类型转换详解

目录 一、内置 转 内置 二、内置 转 自定义 三、自定义 转 内置 四、自定义 转 自定义 五、类型转换规范化 1.static_case 2.reinterpret_cast 3.const_cast 4.dynamic_cast 六、RTTI 一、内置 转 内置 C兼容C语言&#xff0c;在内置类型之间转换规则和C语言一样的&am…

QEMU源码全解析 —— 块设备虚拟化(17)

接前一篇文章:QEMU源码全解析 —— 块设备虚拟化(16) 本文内容参考: 《趣谈Linux操作系统》 —— 刘超,极客时间 《QEMU/KVM源码解析与应用》 —— 李强,机械工业出版社 《KVM实战 —— 原理、进阶与性能调优》—— 任永杰 程舟,机械工业出版社

mac 卸载流氓软件安全助手

之前个人电脑在公司使用过一段时间&#xff0c;为了使用网线联网安装了公司指定的 联软上网助手&#xff0c;谁知安装容易卸载难&#xff0c;后来找运维来卸载&#xff0c;输入管理员密码后&#xff0c;也无反应&#xff0c;最后不了了之了&#xff0c;这个毒瘤软件长期在后台驻…

Java 大视界 -- Java 大数据机器学习模型在智能客服多轮对话系统中的优化策略(179)

&#x1f496;亲爱的朋友们&#xff0c;热烈欢迎来到 青云交的博客&#xff01;能与诸位在此相逢&#xff0c;我倍感荣幸。在这飞速更迭的时代&#xff0c;我们都渴望一方心灵净土&#xff0c;而 我的博客 正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识&#xff0c;也…

极氪汽车云原生架构落地实践

云原生架构落地实践的背景 随着极氪数字业务的飞速发展&#xff0c;背后的 IT 技术也在不断更新迭代。极氪极为重视客户对服务的体验&#xff0c;并将系统稳定性、业务功能的迭代效率、问题的快速定位和解决视为构建核心竞争力的基石。 为快速响应用户的需求&#xff0c;例如…

Python•判断循环

ʕ⸝⸝⸝˙Ⱉ˙ʔ ♡ 判断🍰常用的判断符号(比较运算符)andor括号notin 和 not inif-elif-else循环🍭计数循环 forrange()函数简易倒计时enumerate()函数zip()函数遍历列表遍历元组遍历字符串遍历字典条件循环 while提前跳转 continue跳出循环 break能量站😚判断🍰 …

FreeRTOS与RT-Thread深度对比:从入门到精通的全面解析

FreeRTOS与RT-Thread深度对比&#xff1a;从入门到精通的全面解析 在嵌入式系统开发领域&#xff0c;实时操作系统(RTOS)扮演着至关重要的角色。FreeRTOS和RT-Thread作为两款主流的开源RTOS&#xff0c;各有特色&#xff0c;适用于不同的应用场景。本文将从小白到大神的角度&a…

OpenCV 图形API(18)用于执行两个矩阵(或数组)的逐元素减法操作函数sub()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 描述 计算两个矩阵之间的逐元素差值。 sub 函数计算两个矩阵之间的差值&#xff0c;要求这两个矩阵具有相同的尺寸和通道数&#xff1a; dst ( I ) src…

LeetCode刷题SQL笔记

系列博客目录 文章目录 系列博客目录1.distinct关键字 去除重复2.char_length()3.group by 与 count()连用4.date类型有个函数datediff()5.mod 函数6.join和left join的区别1. **JOIN&#xff08;内连接&#xff0c;INNER JOIN&#xff09;**示例&#xff1a; 2. **LEFT JOIN&a…

其他合成方式介绍

在 SurfaceFlinger 的 Layer 处理逻辑中&#xff0c;除了常见的 Client Composition&#xff08;GPU合成&#xff09; 和 Device Composition&#xff08;HWC合成&#xff09;&#xff0c;还存在一些特殊的合成方式&#xff0c;比如 Sideband、Solid Color 和 Display Decorati…

GraphRAG与知识图谱

一、GraphRAG介绍 1.1 什么是 Graph RAG&#xff1f; Graph RAG&#xff08;Retrieval-Augmented Generation&#xff09;&#xff0c;是一种基于知识图谱的检索增强技术&#xff0c; 通过构建图模型的知识表达&#xff0c;将实体和关系之间的联系用图的形式进行展示&#xff…

一个开源的 VS Code 大模型聊天插件:Light-at

这篇文章是一个开发杂谈。对于有经验的开发者来说&#xff0c;可能这个项目并不算特别复杂或者高技术&#xff0c;只是对我个人来说算一个里程碑&#xff0c;因此写篇杂谈文章记录一下。也许也能给起步者一些参考。 项目地址&#xff1a;https://github.com/HiMeditator/light-…

SQL121 创建索引

-- 普通索引 CREATE INDEX idx_duration ON examination_info(duration);-- 唯一索引 CREATE UNIQUE INDEX uniq_idx_exam_id ON examination_info(exam_id);-- 全文索引 CREATE FULLTEXT INDEX full_idx_tag ON examination_info(tag);描述 现有一张试卷信息表examination_in…