卖萌屋学术站发布!通往高效刷论文之路

文 | 夕小瑶

编 | 兔子酱


学术站诞生

好久没有冒泡啦,大家还记得雁栖湖畔的夕小瑶吗!(划掉(*/ω\*)

趁着国庆假期,跟卖萌屋小伙伴们终于把拖延已久的Arxiv神器》翻新了,零零星星做了几个月,最近终于看起来“像点样子”了(老泪纵横)。于是,Arxiv神器的正式版——卖萌屋学术站,正式上线啦!

顾名思义,学术站就是为学术信息而生嗒

虽然AI行业变得越来越卷,但CV、NLP等热点方向依然在持续高速的发(灌)展(水)中,经常涌现出一些有趣的paper,可能哪天就被借鉴用于解决手上的问题了。所以入门后,养成追前沿、刷paper的习惯是非常非常必要的,无论你是在学术界还是工业界

不过由于众所周知的某墙,以及某些不是很好用的国外服务,导致新手刷paper的效率很低,又经常分不清哪些paper(可能)含金量更高一些,哪些疑似不可靠的灌水,很容易出现费力不讨好的情况,受挫之后又开始选择咀嚼各大小媒体的论文解读了。以卖萌屋为例,虽然每周能为大家递上两三篇原创已经看起来很高产了,但是实话讲,那些我们发现的有趣的paper里,最终能呈现到粉丝面前的可能只有2~3成。毕竟,理解容易生成难哇。。。

所以本着授人以鱼不如授人以渔的想法,就跟小伙伴们把自己平时刷paper的服务努力优化了一下,开放出来啦~希望能帮到各位爱追AI前沿的小伙伴们。

地址

arxiv.xixiaoyao.cn

PS:很好记有木有!另外,建议PC端访问,刷论文更方便~移动端入口在公众号【夕小瑶的卖萌屋】底部的【小屋神器】标签页哦。

小站目标

为了方便大家更加高效便捷的获取 CV、NLP、IR 等领域的学术信息啦(后面悄咪咪观察一下,用的人多的话再考虑加研究方向)。这里的高效便捷体现在两个方面:

  • 抽出来了一些paper质量相对比较高的机构名学术会议/期刊名,如果精力有限,可以优先刷刷这些。

  • 不用跟那个什么墙斗智斗勇了,访问速度很快的

话不多说,看图趴!

一篇paper录用的会议名在标题中用橙色tag标出,机构名会用蓝色tag标出。比如图里这篇《TeaForN:Teacher-Forcing with N-grams》的paper就是刚放出来的Google发表于EMNLP20的论文(快夸夸我们)

不过,这种抽取会议名和机构名置顶的做法也会导致一些公平性问题。有的好paper确实没投顶会也不是来自大厂或名校,就容易被淹没掉。我们也在努力优化中,后续会同时通过NLP和排序算法优化,以及人的力量来努力不让金子被埋没(认真脸

建议&吐槽

后台回复关键词【入群】,按提示加入学术站交(吐)流(槽)群,很懒的小伙伴也可以直接在本文评论区留言哦。

后台回复关键词【入群

加入卖萌屋NLP/IR/Rec与求职讨论群

有顶会审稿人、大厂研究员、知乎大V和妹纸

等你来撩哦~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/479906.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

消息中间件系列(五):MQ消息队列的12点核心原理总结

消息队列已经逐渐成为分布式应用场景、内部通信、以及秒杀等高并发业务场景的核心手段,它具有低耦合、可靠投递、广播、流量控制、最终一致性 等一系列功能。 无论是 RabbitMQ、RocketMQ、ActiveMQ、Kafka还是其它等,都有的一些基本原理、术语、机制等&…

征稿 | 2019年全国知识图谱与语义计算大会(CCKS2019)投稿时间延长

全国知识图谱与语义计算大会(CCKS: China Conference on Knowledge Graph and Semantic Computing)由中国中文信息学会语言与知识计算专业委员会组织和承办。全国知识图谱与语义计算大会是两个全国性会议的合并:中文知识图谱研讨会the Chines…

LeetCode 641. 设计循环双端队列

文章目录1. 题目信息2. 解题1. 题目信息 设计实现双端队列。 你的实现需要支持以下操作: MyCircularDeque(k):构造函数,双端队列的大小为k。 insertFront():将一个元素添加到双端队列头部。 如果操作成功返回 true。 insertLast()&#xff…

代码逆流成河,深入C++如何又快又有效?

虽然编程语言有很多,但在需要顶级性能的项目上,基本都会使用C。尤其是机器人、自动驾驶、AI等嵌入和实时系统,都是C的主要应用方向,在这种层面,几乎没有竞争者。比如熊厂的搜索引擎、推荐引擎等核心产品,鹅…

论文浅尝 | 混合注意力原型网络的含噪音少样本的关系分类

论文笔记整理:余海阳,浙江大学硕士,研究方向为知识图谱、自然语言信息抽取。链接:https://www.aaai.org/Papers/AAAI/2019/AAAI-GaoTianyu.915.pdf动机现有的关系分类方法主要依赖于远程监控(DS)&#xff0…

消息中间件系列(七):如何从0到1设计一个消息队列中间件

消息队列作为系统解耦,流量控制的利器,成为分布式系统核心组件之一。 如果你对消息队列背后的实现原理关注不多,其实了解消息队列背后的实现非常重要。 不仅知其然还要知其所以然,这才是一个优秀的工程师需要具备的特征。 今天…

LeetCode 239. 滑动窗口最大值(双端队列+单调栈)

文章目录1. 题目信息2. 解题2.1 暴力法2.2 双端队列法1. 题目信息 给定一个数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。 返回滑动窗口中的最大值。 示例:输入: n…

Airbnb搜索:重排序阶段如何优化搜索结果多样性?

文 | 谷育龙Eric编 | QvQ我是谷育龙Eric,研究方向有深度学习、搜索推荐,喜欢为大家分享深度学习在搜索推荐广告排序应用的文章。本文将基于Airbnb KDD 2020年的论文,介绍Airbnb搜索排序中在重排序阶段如何解决多样性的问题,对工业…

肖仰华 | 做个“有知识”的机器人

本文转载自公众号:知识工场。肖仰华博士,复旦大学计算机科学与技术学院教授,博士生导师,知识工场实验室负责人。本文是肖仰华教授应《中国计算机学会通信》邀请所撰写的特邀文章,全文见 CCCF 2019 年第 5 期。摘要:时下…

消息中间件系列(九):详解RocketMQ的架构设计、关键特性、与应用场景

内容大纲: RocketMQ的简介与演进 RocketMQ的架构设计 RocketMQ的关键特性 RocketMQ的应用场景 RocketMQ的简介 RocketMQ一个纯java、分布式、队列模型的开源消息中间件,前身是MetaQ,是阿里研发的一个队列模型的消息中间件,后开…

LeetCode 151. 翻转字符串里的单词(栈)

文章目录1. 题目信息2. 解题1. 题目信息 给定一个字符串,逐个翻转字符串中的每个单词。 示例 1:输入: "the sky is blue" 输出: "blue is sky the" 示例 2:输入: " hello world! " 输出: "world! hel…

推荐系统架构与算法流程详解

文 | yijiapan腾讯 WXG 数据分析师推荐算法的理解如果说互联网的目标就是连接一切,那么推荐系统的作用就是建立更加有效率的连接,推荐系统可以更有效率的连接用户与内容和服务,节约了大量的时间和成本。如果把推荐系统简单拆开来看&#xff0…

论文浅尝 | 将字面含义嵌入知识图谱表示学习

论文笔记整理:吴桐桐,东南大学博士生,研究方向为知识图谱,自然语言处理。链接:https://arxiv.org/pdf/1802.00934.pdf本文主要关注知识图谱中的链接预测问题,在既有的知识图谱表示学习模型的基础上提出了一…

优知学院创始人陈睿:怎样做好一个创业公司CTO?

CTO 是企业内技术最高负责人,对企业的发展起到至关重要的作用。但随着公司的不断发展,CTO 的工作重心也会不断变化。只有在正确的阶段做正确的事,才能更好地为公司做出贡献。 本文作者:陈睿 优知学院创始人,10年产品技…

2020年深度学习调参技巧合集

文 | 山竹小果源 | NewBeeNLP编 | 夕小瑶的卖萌屋重点说明:本文主要为整理总结,大部分参考文末资料,感谢分享。寻找合适的学习率学习率是一个非常非常重要的超参数,这个参数呢,面对不同规模、不同batch-size、不同优化…

LeetCode 226. 翻转二叉树(DFS BFS)

文章目录1. 题目信息2. 解题2.1 DFS2.2 BFS1. 题目信息 翻转一棵二叉树。 示例:输入:4/ \2 7/ \ / \ 1 3 6 9输出:4/ \7 2/ \ / \ 9 6 3 1来源:力扣(LeetCode) 链接:…

论文浅尝 | GraphIE:基于图的信息抽取框架

笔记整理:吕欣泽,南京大学计算机科学与技术系,硕士研究生。论文连接:https://arxiv.org/pdf/1810.13083.pdf发表会议:NAACL 2019摘要大多数现代信息提取(IE)系统都是作为顺序标记器实现的&#…

好产品,懂人性

好的产品无一例外,懂人性 张小龙曾经说过,产品经理要懂得抓住用户的贪、嗔、痴,培养用户对产品的粘性,就是要让用户对你的产品产生贪、嗔、痴。 贪是贪婪,嗔是嫉妒,痴是执着。 人类的贪婪、嫉妒和执著培…

LeetCode 104. 二叉树的最大深度

文章目录1. 题目信息2. 解题2.1 递归法2.2 按层遍历1. 题目信息 给定一个二叉树,找出其最大深度。 二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。 说明: 叶子节点是指没有子节点的节点。 示例: 给定二叉树 [3,9,20,null,null,15,7]&…

谷歌重磅:可以优化自己的优化器!手动调参或将成为历史!?

文 | 小轶编 | 夕小瑶背景Google Brain团队发布的一篇最新论文在外网引发热议,或将成为Deep Learning发展历程上里程碑式的工作。它所讨论的,是所有AI行业者都要面对的——Deep Learning中的优化问题。也就是,如何更好地训练一个模型。深度模…