WebView性能、体验分析与优化

在App开发中,内嵌WebView始终占有着一席之地。它能以较低的成本实现Android、iOS和Web的复用,也可以冠冕堂皇的突破苹果对热更新的封锁。

然而便利性的同时,WebView的性能体验却备受质疑,导致很多客户端中需要动态更新等页面时不得不采用其他方案。

以发展的眼光来看,功能的动态加载以及三端的融合将会是大趋势。那么如何克服WebView固有的问题呢?我们将从性能、内存消耗、体验、安全几个维度,来系统的分析客户端默认WebView的问题,以及对应的优化方案。

对于WebView的性能,给人最直观的莫过于:打开速度比native慢。

是的,当我们打开一个WebView页面,页面往往会慢吞吞的loading很久,若干秒后才出现你所需要看到的页面。

这是为什么呢?

对于一个普通用户来讲,打开一个WebView通常会经历以下几个阶段:

  1. 交互无反馈
  2. 到达新的页面,页面白屏
  3. 页面基本框架出现,但是没有数据;页面处于loading状态
  4. 出现所需的数据

如果从程序上观察,WebView启动过程大概分为以下几个阶段:

WebView启动时间

如何缩短这些过程的时间,就成了优化WebView性能的关键。

接下来我们逐一分析各个阶段的耗时情况,以及需要注意的优化点。

WebView初始化

当App首次打开时,默认是并不初始化浏览器内核的;只有当创建WebView实例的时候,才会创建WebView的基础框架。

所以与浏览器不同,App中打开WebView的第一步并不是建立连接,而是启动浏览器内核

我们来分析一下这段耗时到底需要多久。

分析

针对WebView的初始化时间,我们可以定义两个指标:

  • 首次初始化时间:客户端冷启动后,第一次打开WebView,从开始创建WebView到开始建立网络连接之间的时间。
  • 二次初始化时间:在打开过WebView后,退出WebView,再重新打开WebView,从开始创建WebView到开始建立网络连接之间的时间。

测试数据:

测试系统1: iOS模拟器,Titans 10.0.7

测试系统2: OPPO R829T Android 4.2.2

测试方式:测试10次取平均值

测试App:美团外卖

单位:ms

首次初始化时间二次初始化时间
iOS(UIWebView)306.5676.43
iOS(WKWebView)763.26457.25
Android192.79 *142.53

*Android外卖客户端启动后会在后台开启WebView进程,故并不是完全新建WebView时间。

这意味着什么呢?

作为前端工程师,统计了无数次的页面打开时间,都是以网络连接开始作为起点的。

很遗憾的通知您:WebView中用户体验到的打开时间需要再增加70~700ms。

于是我们找到了“为什么WebView总是很慢”的原因之一:

  • 在浏览器中,我们输入地址时(甚至在之前),浏览器就可以开始加载页面。
  • 而在客户端中,客户端需要先花费时间初始化WebView完成后,才开始加载。

而这段时间,由于WebView还不存在,所有后续的过程是完全阻塞的。可以这样形容WebView初始化过程:

WebView启动过程

那么有哪些解决办法呢?

怎么优化

由于这段过程发生在native的代码中,单纯靠前端代码是无法优化的;大部分的方案都是前端和客户端协作完成,以下是几个业界采用过的方案。

全局WebView

方法:

  • 在客户端刚启动时,就初始化一个全局的WebView待用,并隐藏;
  • 当用户访问了WebView时,直接使用这个WebView加载对应网页,并展示。

这种方法可以比较有效的减少WebView在App中的首次打开时间。当用户访问页面时,不需要初始化WebView的时间。

当然这也带来了一些问题,包括:

  • 额外的内存消耗。
  • 页面间跳转需要清空上一个页面的痕迹,更容易内存泄露。

【参考东软专利 - 加载网页的方法及装置 CN106250434A】

客户端代理数据请求

方法:

  • 在客户端初始化WebView的同时,直接由native开始网络请求数据;
  • 当页面初始化完成后,向native获取其代理请求的数据。

此方法虽然不能减小WebView初始化时间,但数据请求和WebView初始化可以并行进行,总体的页面加载时间就缩短了;缩短总体的页面加载时间:

【参考腾讯分享:70%以上业务由H5开发,手机QQ Hybrid 的架构如何优化演进?】

还有其他各种优化的方式,不再一一列举,总结起来都是围绕两点:

  1. 在使用前预先初始化好WebView,从而减小耗时。
  2. 在初始化的同时,通过Native来完成一些网络请求等过程,使得WebView初始化不是完全的阻塞后续过程。

建立连接/服务器处理

在页面请求的数据返回之前,主要有以下过程耗费时间。

  • DNS
  • connection
  • 服务器处理

分析

以下为美团中活动页面的链接时间统计:

统计: 美团的活动页面

内容值: n%分位值(ms)

DNSconnection获取首字节
50%1.371172
90%60360541

优化

这些时间都是发生在网页加载之前,但这并不意味着无法优化,有以下几种方法。

DNS采用和客户端API相同的域名

DNS会在系统级别进行缓存,对于WebView的地址,如果使用的域名与native的API相同,则可以直接使用缓存的DNS而不用再发起请求图片。

以美团为例,美团的客户端请求域名主要位于api.meituan.com,然而内嵌的WebView主要位于 i.meituan.com。

当我们初次打开App时:

  • 客户端首次打开都会请求api.meituan.com,其DNS将会被系统缓存。
  • 然而当打开WebView的时候,由于请求了不同的域名,需要重新获取i.meituan.com的IP。

根据上面的统计,至少10%的用户打开WebView时耗费了60ms在DNS上面,如果WebView的域名与App的API域名统一,则可以让WebView的DNS时间全部达到1.3ms的量级

静态资源同理,最好与客户端的资源域名保持一致。

同步渲染采用chunk编码

同步渲染时如果后端请求时间过长,可以考虑采用chunk编码,将数据放在最后,并优先将静态内容flush。对于传统的后端渲染页面,往往都是使用的【浏览器】–> 【Web API】 –> 【业务 API】的加载模式,其中后端时间就指的是Web API的处理时间了。在这里Web API一般有两个作用:

  1. 确定静态资源的版本。
  2. 根据用户的请求,去业务API获取数据。

而一般确定静态资源的版本往往是直接读取代码版本,基本无耗时;而主要的后端时间都花费在了业务API请求上面。

那么怎么优化利用这段时间呢?

在HTTP协议中,我们可以在header中设置 transfer-encoding:chunked 使得页面可以分块输出。如果合理设计页面,让head部分都是确定的静态资源版本相关内容,而body部分是业务数据相关内容,那么我们可以在用户请求的时候,首先将Web API可以确定的部分先输出给浏览器,然后等API完全获取后,再将API数据传输给浏览器。

下图可以直观的看出分chunk输出和一起输出的区别:

分chunk加载

  • 如果采用普通方式输出页面,则页面会在服务器请求完所有API并处理完成后开始传输。浏览器要在后端所有API都加载完成后才能开始解析。
  • 如果采用chunk-encoding: chunked,并优先将页面的静态部分输出;然后处理API请求,并最终返回页面,可以让后端的API请求和前端的资源加载同时进行。
  • 两者的总共后端时间并没有区别,但是可以提升首字节速度,从而让前端加载资源和后端加载API不互相阻塞。

页面框架渲染

页面在解析到足够多的节点,且所有CSS都加载完成后进行首屏渲染。在此之前,页面保持白屏;在页面完全下载并解析完成之前,页面处于不完整展示状态。

分析

我们以一个美团的活动页面作为样例:

测试页面:http://i.meituan.com/firework/meituanxianshifengqiang

在Mac上面,模拟4G情况

页面样式:

页面

测试得到的时间耗费如下:

表1

阶段时间大小备注
DOM下载58ms29.5 KB4G网络
DOM解析12.5ms198 KB根据估算,在手机上慢2~5倍不等
CSS请求+下载58ms11.7 KB4G网络(包含链接时间,CDN)
CSS解析2.89ms54.1 KB根据估算,在手机上慢2~5倍不等
渲染23ms1361节点根据估算,在手机上慢2~5倍不等
绘制4.1ms根据估算,在手机上慢2~5倍不等
合成0.23msGPU处理

同时,对HTML的加载时间进行分析,可以得到如下时间点。

表2

指标时间计算方法
HTML加载完成时间218performance.timing.responseEnd - performance.timing.fetchStart
HTML解析完成时间330performance.timing.domInteractive - performance.timing.fetchStart

这意味着什么呢?

对于表1

可以看到,随着在网络优良的情况下,Dom的解析所占耗时比例还是不算低的,对于低端机器更甚。Layout时间也是首屏前耗时的大头,据猜测这与页面使用了rem作为单位有关(待进一步分析)。

对于表2,我们可以发现一个问题

一般来说HTML在开始接收到返回数据的时候就开始解析HTML并构建DOM树。如果没有JS(JavaScript)阻塞的话一般会相继完成。然而,在这里时间相差了90ms……也就是说,解析被阻塞了。

进一步分析可以发现,页面的header部分有这样的代码:

.....
<link href="//ms0.meituan.net/css/eve.9d9eee71.css" rel="stylesheet" onload="MT.pageData.eveTime=Date.now()"/>
<script>
window.fk = function (callback) {
require(['util/native/risk.js'], function (risk) {risk.getFk(callback);
});
}
</script>
</head>
....

通常情况下,上面代码的link部分和script部分如果单独出现,都不会阻塞页面的解析:

  • CSS不会阻止页面继续向下继续。
  • 内联的JS很快执行完成,然后继续解析文档。

然而,当这两部分同时出现的时候,问题就来了。

  • CSS加载阻塞了下面的一段内联JS的执行,而被阻塞的内联JS则阻塞了HTML的解析。

通常情况下,CSS不会阻塞HTML的解析,但如果CSS后面有JS,则会阻塞JS的执行直到CSS加载完成(即便JS是内联的脚本),从而间接阻塞HTML的解析。

优化

在页面框架加载这一部分,能够优化的点参照雅虎14条就够了;但注意不要犯错,一个小小的内联JS放错位置也会让性能下降很多。

  1. CSS的加载会在HTML解析到CSS的标签时开始,所以CSS的标签要尽量靠前。
  2. 但是,CSS链接下面不能有任何的JS标签(包括很简单的内联JS),否则会阻塞HTML的解析。
  3. 如果必须要在头部增加内联脚本,一定要放在CSS标签之前。

CSS带来的阻塞解析

JS加载

对于大型的网站来说,在此我们先提出几个问题:

  • 将全部JS代码打成一个包,造成首次执行代码过大怎么办?
  • 将JS以细粒度打包,造成请求过多怎么办?
  • 将JS按 “基础库” + “页面代码” 分别打包,要怎么界定什么是基础代码,什么是页面代码;不同页面用的基础代码不一致怎么办?
  • 单一文件的少量代码改的是否会导致缓存失效?
  • 代码模块间有动态依赖,怎样合并请求。

关于这些问题的解决方案数量可能会比问题还多,而它们也各有优劣。

具体分析太过复杂,鉴于篇幅原因在这里不做具体分析了。您可以期待我们的后续计划:BPM(浏览器包管理)。

JS解析、编译、执行

在PC互联网时代,人们似乎都快忘记了JS的解析和执行还需要消耗时间。确实,在几年前网速还在用kb衡量的时代里,JS的解析时间在整个页面的打开时间里只能算是九牛一毛。

然而,随着网速越来越快,而CPU的速度反而没有提升(从PC到手机),JS的时间开销就成为问题了。那么JS的编译和解析,在当今的页面上要消耗多少时间呢?

分析

我们用以下方式来检验JS代码的解析/编译和执行时间:

<script>window.t1 = performance.now()
</script>
<script>window.test = function () {// test code}
</script>
<script>window.t2 = performance.now()test();window.t3 = performance.now();alert("编译耗时:" + (t2 - t1));alert("执行耗时:" + (t3 - t2));
</script>

将测试代码放入 【test code】 位置,然后在手机中执行;

  • 在t1~t2期间,JS代码仅仅声明了一个函数,主要时间会集中在解析和编译过程;

  • 在t2~t3时间段内,执行test时时间主要为代码的执行时间

在首次启动客户端后,打开WebView的测试页面,我们可以得到如下的结果:

测试系统: iPhone6 iOS 10.2.1

测试系统: OPPO R829T Android 4.2.2

内容值: 编译时间(ms)/执行时间(ms)

系统Zepto.jsVue.jsReact.js + ReactDOM.js
iOS5.2 / 812.8 / 16.113.7 / 43.3
Android13 / 4043 / 12726 / 353

当保持客户端进行不关闭情况下,关闭WebView并重新访问测试页面,再次测试得到如下结果:

系统Zepto.jsVue.jsReact.js + ReactDom.js
iOS0.9 / 1.95 / 7.43.5 / 23
Android5 / 917 / 1225 / 60

执行时间指的是框架代码加载的页面的初始化时间,没有任何业务的调用。

这意味着什么

经过测试可以得出以下结论: * 偏重的框架,例如React,仅仅初始化的时间就会达到50ms ~ 350ms,这在对性能敏感的业务中时比较不利的。 * 在App的启动周期内,统一域名下的代码会被缓存编辑和初始化结果,重复调用性能较好。

所以,在移动浏览器上,JS的解析和执行时间并不是不可忽略的。

在低端安卓机上,(框架的初始化+异步数据请求+业务代码执行)会远高于几KB网络请求时间;高性能的Web网站需要仔细斟酌前端渲染带来的性能问题。

优化

  • 高性能要求页面还是需要后端渲染。
  • React还是太重了,面向用户写系统需要谨慎考虑。
  • JS代码的编译和执行会有缓存,同App中网页尽量统一框架。

WebView性能优化总结

一个加载网页的过程中,native、网络、后端处理、CPU都会参与,各自都有必要的工作和依赖关系;让他们相互并行处理而不是相互阻塞才可以让网页加载更快:

  • WebView初始化慢,可以在初始化同时先请求数据,让后端和网络不要闲着。
  • 后端处理慢,可以让服务器分trunk输出,在后端计算的同时前端也加载网络静态资源。
  • 脚本执行慢,就让脚本在最后运行,不阻塞页面解析。
  • 同时,合理的预加载、预缓存可以让加载速度的瓶颈更小。
  • WebView初始化慢,就随时初始化好一个WebView待用。
  • DNS和链接慢,想办法复用客户端使用的域名和链接。
  • 脚本执行慢,可以把框架代码拆分出来,在请求页面之前就执行好。

分析

为了测试WebView会消耗多少内存,我们设计了如下的测试方案:

  1. 客户端启动后,记录消耗的内存。
  2. 打开空页面,记录内存的上涨。
  3. 退出。
  4. 打开空页面,记录内存上涨。
  5. 退出。
  6. 打开加载了代码的页面,记录内存的额外增加。

得到如下测试结果:

测试系统: iOS模拟器,Titans 10.0.7

测试系统: OPPO R829T Android 4.2.2

测试方式:测试10次取平均值

首次打开增加内存二次打开增加内存加载KNB+VUE+灵犀
iOS UIWebView31.1M5.52M2M
iOS WKWebView1.95M1.6M2M
Android32.2M6.62M1.7M

WKWebView的内存消耗相比其他低了一个数量级,在此方面相当占优。

UIWebView和Android的WebView在首次初始化时都要消耗大量内存,之后每次新建WebView会额外增加一些。

UIWebView的内存占用不会在关闭WebView时主动回收,每次新开WebView都会消耗额外内存。

相比于性能,对于内存的优化可以做的还是比较有限的。

  • WKWebView的内存占用优势比较大(代价是初始化比较慢)。
  • 页面内代码消耗的内存相比与WebView系统的内存消耗相比可以说是很低。

除了打开的速度,WebView通常体验也没有native的实现更好,我们可以找到以下几个例子:

长按选择

在WebView中,长按文字会使得WebView默认开始选择文字;长按链接会弹出提示是否在新页面打开。

解决方法:可以通过给body增加CSS来禁止这些默认规则。

点击延迟

在WebView中,click通常会有大约300ms的延迟(同时包括链接的点击,表单的提交,控件的交互等任何用户点击行为)。

唯一的例外是设置的meta:viewpoint为禁止缩放的Chrome(然而并不是Android默认的浏览器)。

解决方法:使用fastclick一般可以解决这个问题。

页面滑动期间不渲染/执行

在很多需求中会有一些吸顶的元素,例如导航条,购买按钮等;当页面滚动超出元素高度后,元素吸附在屏幕顶部。

这个功能在PC和native中都能够实现,然而在WebView中却成了难题:

 在页面滚动期间,Scroll Event不触发

不仅如此,WebView在滚动期间还有各种限定:

  • setTimeout和setInterval不触发。
  • GIF动画不播放。
  • 很多回调会延迟到页面停止滚动之后。
  • background-position: fixed不支持。
  • 这些限制让WebView在滚动期间很难有较好的体验。

这些限制大部分是不可突破的,但至少对于吸顶功能还是可以做一些支持:

解决方法:

  • 在iOS上,使用position: sticky可以做到元素吸顶。
  • 在Android上,监听touchmove事件可以在滑动期间做元素的position切换(惯性运动期间就无效了)。

crash

通常WebView并不能直接接触到底层的API,因此比较稳定;但仍然有使用不当造成整个App崩溃的情况。

目前发现的案例包括:

  • 使用过大的图片(2M)
  • 不正常使用WebGL

WebView被运营商劫持、注入问题

由于WebView加载的页面代码是从服务器动态获取的,这些代码将会很容易被中间环节所窃取或者修改,其中最主要的问题出自地方运营商(浙江尤其明显)和一些WiFi。

我们监测到的问题包括:

  • 无视通信规则强制缓存页面。
  • header被篡改。
  • 页面被注入广告。
  • 页面被重定向。
  • 页面被重定向并重新iframe到新页面,框架嵌入广告。
  • HTTPS请求被拦截。
  • DNS劫持。

这些问题轻则影响用户体验,重则泄露数据,或影响公司信誉。

针对页面注入的行为,有一些解决方案:

使用CSP(Content Security Policy)

CSP可以有效的拦截页面中的非白名单资源,而且兼容性较好。在美团移动版的使用中,能够阻止大部分的页面内容注入。

但在使用中还是存在以下问题:

  • 由于业务的需要,通常inline脚本还是在白名单中,会导致完全依赖内联的页面代码注入可以通过检测。
  • 如果注入的内容是纯HTML+CSS的内容,则CSP无能为力。
  • 无法解决页面被劫持的问题。
  • 会带来额外的一些维护成本。

总体来说CSP是一个行之有效的防注入方案,但是如果对于安全要求更高的网站,这些还不够。

HTTPS

HTTPS可以防止页面被劫持或者注入,然而其副作用也是明显的,网络传输的性能和成功率都会下降,而且HTTPS的页面会要求页面内所有引用的资源也是HTTPS的,对于大型网站其迁移成本并不算低。

HTTPS的一个问题在于:一旦底层想要篡改或者劫持,会导致整个链接失效,页面无法展示。这会带来一个问题:本来页面只是会被注入广告,而且广告会被CSP拦截,而采用了HTTPS后,整个网页由于受到劫持完全无法展示。

对于安全要求不高的静态页面,就需要权衡HTTPS带来的利与弊了。

App使用Socket代理请求

如果HTTP请求容易被拦截,那么让App将其转换为一个Socket请求,并代理WebView的访问也是一个办法。

通常不法运营商或者WiFi都只能拦截HTTP(S)请求,对于自定义的包内容则无法拦截,因此可以基本解决注入和劫持的问题。

Socket代理请求也存在问题。

  • 首先,使用客户端代理的页面HTML请求将丧失边下载边解析的能力;根据前面所述,浏览器在HTML收到部分内容后就立刻开始解析,并加载解析出来的外链、图片等,执行内联的脚本……而目前WebView对外并没有暴露这种流式的HTML接口,只能由客户端完全下载好HTML后,注入到WebView中。因此其性能将会受到影响。

  • 其次,其技术问题也是较多的,例如对跳转的处理,对缓存的处理,对CDN的处理等等……稍不留神就会埋下若干大坑。

此外还有一些其他的办法,例如页面的MD5检测,页面静态页打包下载等等方式,具体如何选择还要根据具体的场景抉择。

客户端内打开第三方WebView

一般来说,客户端内的WebView都是可以通过客户端的某个schema打开的,而要打开页面的URL很多都并不写在客户端内,而是可以由URL中的参数传递过去的。

那么,一旦此URL可以通过外界输入自定义,那么就有可能在客户端内部打开一个外部的网页。

例:作案过程

  • 某个App有个WebView,打开的schema为 appxx://web?url={weburl}。
  • App中有个扫码的功能,可以扫描某个二维码并打开对应的schema链接。
  • 某个坏人制作了一个二维码并张贴到街上,内容符合 : appxx://web?url={some_hack_weburl}。
  • 用户扫码打开了some_hack_weburl。
  • 如果some_hack_weburl是一个高仿的登录页面,那么用户将会很可能将用户名密码提交到其他网站。

解决方法:在内嵌的WebView中应该限制允许打开的WebView的域名,并设置运行访问的白名单。或者当用户打开外部链接前给用户强烈而明显的提示。

在一个客户端内,native目前主要功能是提供高效而基础的功能;内部的WebView则添加一些性能体验要求不高但动态化要求高的能力。

提高客户端的动态能力,或者提高WebView的性能,都是提升App功能覆盖的方式。

而目前的各种框架,ReactNative、Week包括微信小程序,都是这个趋势的尝试。

随着技术的发展,WebView的性能、体验和安全问题也将会逐渐的改善,在App中占有越来越多比重的同时,也将会为App开拓新的能力,为用户带来更优质的体验。

dest

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/478418.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode 240. 搜索二维矩阵 II(二分查找 分治)

文章目录1. 题目2. 解题2.1 从左下角或者右上角开始搜索2.2 分治算法1. 题目 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target。该矩阵具有以下特性&#xff1a; 每行的元素从左到右升序排列。 每列的元素从上到下升序排列。 示例: 现有矩阵 matrix 如下…

NLP哪个细分方向最具社会价值?

文 | 小戏让我们来大胆设想一个场景&#xff0c;老板突然发财搞到一笔钱&#xff0c;大手一挥给你五百万&#xff0c;让你去做自然语言处理的研究&#xff0c;你该先研究哪一个细分领域&#xff1f;机器翻译好像不错&#xff0c;信息抽取也很必要&#xff0c;对话系统更是 NLP …

论文浅尝 | 通过阅读实体描述进行零样本的实体链接

笔记整理 | 赖泽升&#xff0c;东南大学本科生来源&#xff1a;ACL2019动机先前实体链接的大多数工作都着重于与通用实体数据库的链接&#xff0c;通常希望链接到专门的实体词典&#xff0c;例如法律案件&#xff0c;公司项目描述&#xff0c;小说中的字符集或术语表。但这些工…

LeetCode 29. 两数相除(位运算)

1. 题目 给定两个整数&#xff0c;被除数 dividend 和除数 divisor。将两数相除&#xff0c;要求不使用乘法、除法和 mod 运算符。 返回被除数 dividend 除以除数 divisor 得到的商。 示例 1: 输入: dividend 10, divisor 3 输出: 3示例 2: 输入: dividend 7, divisor -…

Git使用的奇技淫巧

源 | Linux公社Git 版本对比相关操作[1] 输出工作区和暂存区的不同。git diff[2] 展示暂存区和最近版本的不同git diff --cached[3] 展示暂存区、工作区和最近版本的不同git diff HEAD[4] 展示本地仓库中任意两个 commit 之间的文件变动git diff <commit-id> <commit-…

Hyperloop,让发布简洁高效

Hyperloop 是什么&#xff1f; Hyperloop 是服务于美团点评客户端的组件发版、持续集成、App 打包构建、资源调度等各个环节的发布调度系统。名称起源于美国 Elon Musk 构想的 Hyperloop 超级高铁&#xff0c;象征着现代、简洁、高效。 Hyperloop 提供了一站式的平台&#xff0…

论文浅尝 | 基于潜在类别信息的实体链接

笔记整理 | 黄一凡&#xff0c;东南大学本科生来源&#xff1a;AAAI2020链接&#xff1a;https://arxiv.org/pdf/2001.01447v1.pdf一、简介作者意识到在利用预训练模型进行实体链接时&#xff0c;往往会将类别信息忽略&#xff0c;因此会导致模型将指称链接到拥有错误类别的错误…

LeetCode 166. 分数到小数(小数除法)

1. 题目 给定两个整数&#xff0c;分别表示分数的分子 numerator 和分母 denominator&#xff0c;以字符串形式返回小数。 如果小数部分为循环小数&#xff0c;则将循环的部分括在括号内。 示例 1: 输入: numerator 1, denominator 2 输出: "0.5"示例 2: 输入: …

百度飞桨弯道超车了吗?!

事情是这样的...前不久&#xff0c;小夕注意到了一份来自权威评测机构IDC发布的《2020年下半年深度学习平台市场份额报告》&#xff1a;▲IDC:2020年中国深度学习平台市场综合份额top 5立刻惊了&#xff01;印象里百度飞桨三年前还只是一个低调、小而美的深度学习框架&#xff…

美团点评酒旅数据仓库建设实践

在美团点评酒旅事业群内&#xff0c;业务由传统的团购形式转向预订、直连等更加丰富的产品形式&#xff0c;业务系统也在迅速的迭代变化&#xff0c;这些都对数据仓库的扩展性、稳定性、易用性提出了更高要求。对此&#xff0c;我们采取了分层次、分主题的方式&#xff0c;本文…

论文小综 | 文档级关系抽取方法(上)

本文作者&#xff1a;陈想&#xff0c;浙江大学在读博士&#xff0c;研究方向为自然语言处理张宁豫&#xff0c;浙江大学助理研究员&#xff0c;研究方向为自然语言处理、知识表示与推理1. 前言关系抽取(Relation Extraction, RE)是从纯文本中提取未知关系事实&#xff0c;是自…

LeetCode 621. 任务调度器(贪心)

1. 题目 给定一个用字符数组表示的 CPU 需要执行的任务列表。其中包含使用大写的 A - Z 字母表示的26 种不同种类的任务。任务可以以任意顺序执行&#xff0c;并且每个任务都可以在 1 个单位时间内执行完。CPU 在任何一个单位时间内都可以执行一个任务&#xff0c;或者在待命状…

吴恩达发起新型竞赛范式!模型固定,只调数据?!

文 | 小戏打开 Kaggle &#xff0c;琳琅满目的比赛让人目不暇接&#xff0c;研究的领域更是五花八门&#xff0c;从农林牧渔到衣食住行&#xff0c;似乎只要有数据&#xff0c;不论数据好坏&#xff0c;就可以直接使用各种机器学习的模型在其身上大展拳脚&#xff0c;从逻辑回归…

论文小综 | 文档级关系抽取方法(下)

本文作者&#xff1a;陈想&#xff0c;浙江大学在读博士&#xff0c;研究方向为自然语言处理张宁豫&#xff0c;浙江大学助理研究员&#xff0c;研究方向为自然语言处理、知识表示与推理这篇推文是文档级关系抽取方法的第二部分&#xff0c;前面的部分请移步推文“论文小综 | 文…

LeetCode 128. 最长连续序列(哈希set)

1. 题目 给定一个未排序的整数数组&#xff0c;找出最长连续序列的长度。 要求算法的时间复杂度为 O(n)。 示例:输入: [100, 4, 200, 1, 3, 2] 输出: 4 解释: 最长连续序列是 [1, 2, 3, 4]。它的长度为 4。来源&#xff1a;力扣&#xff08;LeetCode&#xff09; 链接&#…

清华姚班教师劝退文:读博,你真的想好了吗?

文 | 张焕晨编 | 琰琰源 | AI科技评论先简单介绍一下我的背景。我本科在University of Wisconsin-Madison&#xff0c;然后去CMU念了个PhD&#xff0c;主要研究数据库方向。目前回国在清华IIIS&#xff08;姚班&#xff09;做助理教授&#xff0c;并且 cofound 了Singularity D…

纠删码存储系统中的投机性部分写技术

本文已被USENIX’17年度技术大会录用&#xff0c;此处为中文简译版。 阅读英文论文完整版请点击&#xff1a;Speculative Partial Writes in Erasure-Coded Systems 多副本和纠删码&#xff08;EC&#xff0c;Erasure Code&#xff09;是存储系统中常见的两种数据可靠性方法。与…

论文浅尝 - EMNLP | 通过元强化学习实现少样本复杂知识库问答

笔记整理 | 谭亦鸣&#xff0c;东南大学博士生来源&#xff1a;EMNLP 2020链接&#xff1a;https://www.aclweb.org/anthology/2020.emnlp-main.469.pdf本文关注聚合型复杂知识图谱问答任务&#xff0c;这类复杂问题的答案通常需要经过一些集合操作得到&#xff0c;例如&#x…

写了一篇关于 NLP 综述的综述!

文 | 小轶综述&#xff0c;往往是了解一个子领域最为高效的起点。然而&#xff0c;对于AI这样一个日新月异高速发展的行业&#xff0c;时效性也自然地成为了我们选择综述的衡量指标之一。即使一篇 AI 综述具有超高 citation&#xff0c;如果它写于 20 年前&#xff0c;那对今天…

美团点评容器平台HULK的调度系统

本文是美团点评基础架构系列文章之一。这个系列将全面介绍支撑数亿用户、超千万日订单的美团点评平台诸多业务的公共基础架构相关技术。系列已经发布的文章包括&#xff1a; - 《分布式会话跟踪系统架构设计与实践》 - 《Leaf——美团点评分布式ID生成系统》 - 《深度剖析开源分…