图像特征提取与描述_角点特征01:Harris算法+Shi-Tomas算法

1 Harris角点检测

1.1 原理

Harris角点检测的思想是通过图像的局部的小窗口观察图像,角点的特征是窗口沿任意方向移动都会导致图像灰度的明显变化,如下图所示:

 将上述思想转换为数学形式,即将局部窗口向各个方向移动(u,v)并计算所有灰度差异的总和,表达式如下:

​​其中I(x,y)是局部窗口的图像灰度,I(x+u,y+v)是平移后的图像灰度,w(x,y)是窗口函数,该可以是矩形窗口,也可以是对每一个像素赋予不同权重的高斯窗口,如下所示:
角点检测中使E(u,v)的值最大。利用一阶泰勒展开有:

其中I_xI​x​​和 I_yI​y​​ 是沿x和y方向的导数,可用sobel算子计算。

推导如下:

 M矩阵决定了E(u,v)的取值,下面我们利用M来求角点,M是I​x​​和I​y​​的二次项函数,可以表示成椭圆的形状,椭圆的长短半轴由M的特征值λ​1​​和λ​2​​决定,方向由特征矢量决定,如下图所示:

 椭圆函数特征值与图像中的角点、直线(边缘)和平面之间的关系如下图所示。

 共可分为三种情况:

  • 图像中的直线。一个特征值大,另一个特征值小,λ1>>λ2或 λ2>>λ1。椭圆函数值在某一方向上大,在其他方向上小。
  • 图像中的平面。两个特征值都小,且近似相等;椭圆函数数值在各个方向上都小。
  • 图像中的角点。两个特征值都大,且近似相等,椭圆函数在所有方向都增大

Harris给出的角点计算方法并不需要计算具体的特征值,而是计算一个角点响应值RR来判断角点。RR的计算公式为:

式中,detM为矩阵M的行列式;traceM为矩阵M的迹;α为常数,取值范围为0.04~0.06。事实上,特征是隐含在detM和traceM中,因为:

 那我们怎么判断角点呢?如下图所示:

  • 当R为大数值的正数时是角点
  • 当R为大数值的负数时是边界
  • 当R为小数是认为是平坦区域

1.2 实现

在OpenCV中实现Hariis检测使用的API是:

dst=cv.cornerHarris(src, blockSize, ksize, k)

参数:

  • img:数据类型为 float32 的输入图像。

  • blockSize:角点检测中要考虑的邻域大小。

  • ksize:sobel求导使用的核大小

  • k :角点检测方程中的自由参数,取值参数为 [0.04,0.06].

示例:

import cv2 as cv
import numpy as np
import matplotlib.pyplot as plt# 1 读取图像,并转换成灰度图像
img = cv.imread('img/qipan.png')
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
# 2 角点检测
# 2.1 输入图像必须是 float32
gray = np.float32(gray)# 2.2 最后一个参数在 0.04 到 0.05 之间
dst = cv.cornerHarris(gray, 2, 3, 0.04)# 3 设置阈值,将角点绘制出来,阈值根据图像进行选择
# dst > 0.001 * dst.max() 返回一个img大小的Flase和True矩阵
img[dst > 0.001 * dst.max()] = [0, 0, 255]# 4 图像显示
plt.figure(figsize=(10, 8), dpi=100)
plt.imshow(img[:, :, ::-1]), plt.title('Harris角点检测')
plt.xticks([]), plt.yticks([])
plt.show()

结果如下:

 Harris角点检测的优缺点:

优点:

  • 旋转不变性,椭圆转过一定角度但是其形状保持不变(特征值保持不变)
  • 对于图像灰度的仿射变化具有部分的不变性,由于仅仅使用了图像的一介导数,对于图像灰度平移变化不变;对于图像灰度尺度变化不变

缺点:

  • 对尺度很敏感,不具备几何尺度不变性。
  • 提取的角点是像素级的

2 Shi-Tomasi角点检测

2.1 原理

Shi-Tomasi算法是对Harris角点检测算法的改进,一般会比Harris算法得到更好的角点。Harris 算法的角点响应函数是将矩阵 M 的行列式值与 M 的迹相减,利用差值判断是否为角点。后来Shi 和Tomasi 提出改进的方法是,若矩阵M的两个特征值中较小的一个大于阈值,则认为他是角点,即:

如下图所示:

 从这幅图中,可以看出来只有当 λ1 和 λ2 都大于最小值时,才被认为是角点。

2.2 实现

在OpenCV中实现Shi-Tomasi角点检测使用API:

corners = cv2.goodFeaturesToTrack ( image, maxcorners, qualityLevel, minDistance )

参数:

  • Image: 输入灰度图像
  • maxCorners : 获取角点数的数目。
  • qualityLevel:该参数指出最低可接受的角点质量水平,在0-1之间。
  • minDistance:角点之间最小的欧式距离,避免得到相邻特征点。

返回:

  • Corners: 搜索到的角点,在这里所有低于质量水平的角点被排除掉,然后把合格的角点按质量排序,然后将质量较好的角点附近(小于最小欧式距离)的角点删掉,最后找到maxCorners个角点返回。

示例:

import numpy as np 
import cv2 as cv
import matplotlib.pyplot as plt
# 1 读取图像
img = cv.imread('./image/tv.jpg') 
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)
# 2 角点检测
corners = cv.goodFeaturesToTrack(gray,1000,0.01,10)  
# 3 绘制角点
for i in corners:x,y = i.ravel()cv.circle(img,(x,y),2,(0,0,255),-1)
# 4 图像展示
plt.figure(figsize=(10,8),dpi=100)
plt.imshow(img[:,:,::-1]),plt.title('shi-tomasi角点检测')
plt.xticks([]), plt.yticks([])
plt.show()

结果如下:


总结

  1. Harris算法

    思想:通过图像的局部的小窗口观察图像,角点的特征是窗口沿任意方向移动都会导致图像灰度的明显变化。

    API: cv.cornerHarris()

  2. Shi-Tomasi算法

    对Harris算法的改进,能够更好地检测角点

    API: cv2.goodFeatureToTrack()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/469516.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

canvas小程序-快跑程序员

canvas不用说html5带来的好东西,游戏什么的,么么哒 记得有一天玩手机游戏,就是一个跳跃过柱子那种,其实元素很简单啊,app能开发,借助html5 canvas也可以啊,于是就开始了。 --------------------…

数据结构之并查集:UF-Tree优化并查集——19

并查集的优化 在上一节了解到并查集的快速查询,合并,判断归属组等操作,虽然这些操作都非常方便,但是在数据量较大的情况下,并查集的效率并不算高: 上一节中实现代码中使用的合并方法(merge,AP…

图像特征提取与描述_角点特征02:SIFT算法+SURF算法

SIFT/SURF算法 1.1 SIFT原理 前面两节我们介绍了Harris和Shi-Tomasi角点检测算法,这两种算法具有旋转不变性,但不具有尺度不变性,以下图为例,在左侧小图中可以检测到角点,但是图像被放大后,在使用同样的窗…

图像特征提取与描述_角点特征03:Fast算法+ORB算法

1 Fast算法 1.1 原理 我们前面已经介绍过几个特征检测器,它们的效果都很好,特别是SIFT和SURF算法,但是从实时处理的角度来看,效率还是太低了。为了解决这个问题,Edward Rosten和Tom Drummond在2006年提出了FAST算法&…

数据结构之并查集:路径压缩继续优化并查集——20

路径压缩继续优化并查集 在实现的并查集中,在合并操作merge(item1, item2)时,会不管两个元素所在的分组大小,总是将item 1的分组合并到item2的分组,这样可能会导致树的深度无必要地增加: 如果是大树合并到小树上&…

数据结构之并查集:并查集解决案例, Python——21

并查集解决案例畅通工程 案例问题介绍: 某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府"畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还…

图像特征提取与描述_角点特征04:LBP算法+HOG特征算子

1.LBP算法 LBP(Local Binary Pattern)指局部二值模式,是一种用来描述图像局部特征的算子,LBP特征具有灰度不变性和旋转不变性等显著优点。它是由T. Ojala, M.Pietikinen, 和 D. Harwood在1994年提出,由于LBP特征计算简单、效果较好&#xff…

视频操作_01视频读写:视频读写+读取视频+保存视频

1 从文件中读取视频并播放 在OpenCV中我们要获取一个视频,需要创建一个VideoCapture对象,指定你要读取的视频文件: 1.创建读取视频的对象 cap cv.VideoCapture(filepath) 参数: filepath: 视频文件路径 2.视频的属性信息 2.1…

数据结构之图:无向图的介绍与功能实现,Python——22

无向图(Undigraph)的介绍 引入 生活中的图,有地图,集成电路板的图,可以看类似的看做是数据结构中的图数据有"一对一",“一对多”和“多对多”的关系,前两种分别表示线性表和树的存储…

视频操作_02视频追踪:meanshift算法+Camshift算法

1.meanshift 1.1原理 meanshift算法的原理很简单。假设你有一堆点集,还有一个小的窗口,这个窗口可能是圆形的,现在你可能要移动这个窗口到点集密度最大的区域当中。 如下图: 最开始的窗口是蓝色圆环的区域,命名为C1…

数据结构之图:图的搜索,Python代码实现——23

图的搜索 深度优先搜索(Depth First Search) 定义 从例子出发理解 DFS是一种用于遍历或搜寻树类或图类数据结构的算法,这种算法从根结点出发(如果是图,则任意选择一个顶点作为根结点),在回溯之前会尽可能地遍历每一…

人脸识别案例:【实战】opencv人脸检测+Haar特征分类器

1 基础 我们使用机器学习的方法完成人脸检测,首先需要大量的正样本图像(面部图像)和负样本图像(不含面部的图像)来训练分类器。我们需要从其中提取特征。下图中的 Haar 特征会被使用,就像我们的卷积核&…

数据结构之图:用图解决案例,Python代码实现——24

用图解决畅通工程案例与途径查找 代码中需要引入的类方法代码链接: 无向图Undigraph深度优先搜索DFS与广度优先搜索BFS 畅通工程-续 介绍 案例和之前并查集中实现的一样,但问题略有改动,需要判断9-10城市是否相通,9-8城市是否…

【在虚拟环境下完美解决】1698: error: (-215:Assertion failed) empty() in function cv::CascadeClassifier

问题描述 官方文档做的Demo发现遇到了错误提示如下: error: (-215:Assertion failed) !empty() in function ‘cv::CascadeClassifier::detectMultiScale’ 错误的原因: 出现 error: (-215:Assertion failed) !empty() in function ‘cv::CascadeClassif…

计算机视觉概述:视觉任务+场景领域+发展历程+典型任务

一、什么是计算机视觉 定义:计算机视觉(Computer vision)是⼀⻔研究如何使机器“看”的科学,更 进⼀步的说,就是指⽤摄影机和计算机代替⼈眼对⽬标进⾏识别、跟踪和测量 等,⽤计算机处理成为更适合⼈眼观察…

数据结构之图:有向图的介绍与实现,Python代码实现——25

有向图的介绍 引入 在实际生活中,很多应用相关的图都是有方向性的,最直观的就是网络,可以从A页面通过链接跳转到B页面,那么a和b连接的方向是a->b,但不能说是b->a,此时我们就需要使用有向图来解决这一类问题,它和我们之前学习的无向图,最大的区别就在于连接是具有方向的…

图像分类_01图像分类简介:挑战+近邻分类器+CIFAR-10数据集概述

2.1.1 图像分类 任务目的:对输入的图像赋予一个标签,这个标签在指定类别集合中。 下面这个例子中,图像分类模型拍摄一张图像并将概率分配给4个标签{cat,dog,hat,mug}。如图所示,请记住&#xf…

数据结构之图:有向图的拓扑排序,Python代码实现——26

有向图的拓扑排序 拓扑排序介绍 什么是拓扑排序? 一个有向图的拓扑排序(Topological sort 或 Topological ordering)是根据其有向边从顶点U到顶点V对其所有顶点的一个线性排序举个例子:让一个拓扑排序的图中的所有顶点代表某项…

图像分类_02神经网络(NN)简介:定义+ 感知机+历史

2.2.1 什么是神经网络 人工神经网络( Artificial Neural Network, 简写为ANN)也简称为神经网络(NN)。是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)结构和功能的 计算模型…

图像分类_03分类器及损失:线性分类+ SVM损失+Softmax 分类+交叉熵损失

2.3.1 线性分类 2.3.1.1 线性分类解释 上图图中的权重计算结果结果并不好,权重会给我们的猫图像分配⼀个⾮常低的猫分数。得出的结果偏向于狗。 如果可视化分类,我们为了⽅便,将⼀个图⽚理解成⼀个⼆维的点,在下⾯坐标中显示如下…