图像特征提取与描述_角点特征03:Fast算法+ORB算法

1 Fast算法

1.1 原理

我们前面已经介绍过几个特征检测器,它们的效果都很好,特别是SIFT和SURF算法,但是从实时处理的角度来看,效率还是太低了。为了解决这个问题,Edward Rosten和Tom Drummond在2006年提出了FAST算法,并在2010年对其进行了修正。

FAST (全称Features from accelerated segment test)是一种用于角点检测的算法,该算法的原理是取图像中检测点,以该点为圆心的周围邻域内像素点判断检测点是否为角点,通俗的讲就是若一个像素周围有一定数量的像素与该点像素值不同,则认为其为角点

1.1.1 FAST算法的基本流程

  1. 在图像中选取一个像素点 p,来判断它是不是关键点。I_pI​p​​等于像素点 p的灰度值。

  2. 以r为半径画圆,覆盖p点周围的M个像素,通常情狂下,设置 r=3,则 M=16,如下图所示:

  3. 设置一个阈值t,如果在这 16 个像素点中存在 n 个连续像素点的灰度值都高于I_p + tI​p​​+t,或者低于I_p - tI​p​​−t,那么像素点 p 就被认为是一个角点。如上图中的虚线所示,n 一般取值为 12。

  4. 由于在检测特征点时是需要对图像中所有的像素点进行检测,然而图像中的绝大多数点都不是特征点,如果对每个像素点都进行上述的检测过程,那显然会浪费许多时间,因此采用一种进行非特征点判别的方法:首先对候选点的周围每个 90 度的点:1,9,5,13 进行测试(先测试 1 和 19, 如果它们符合阈值要求再测试 5 和 13)。如果 p 是角点,那么这四个点中至少有 3 个要符合阈值要求,否则直接剔除。对保留下来的点再继续进行测试(是否有 12 的点符合阈值要求)。

虽然这个检测器的效率很高,但它有以下几条缺点:

  • 获得的候选点比较多
  • 特征点的选取不是最优的,因为它的效果取决与要解决的问题和角点的分布情况。
  • 进行非特征点判别时大量的点被丢弃
  • 检测到的很多特征点都是相邻的

前 3 个问题可以通过机器学习的方法解决,最后一个问题可以使用非最大值抑制的方法解决。

1.1.2机器学习的角点检测器

  1. 选择一组训练图片(最好是跟最后应用相关的图片)

  2. 使用 FAST 算法找出每幅图像的特征点,对图像中的每一个特征点,将其周围的 16 个像素存储构成一个向量P。

  3. 每一个特征点的 16 像素点都属于下列三类中的一种

  4. 根据这些像素点的分类,特征向量 P 也被分为 3 个子集:Pd ,Ps ,Pb,

  5. 定义一个新的布尔变量K​p​​,如果 p 是角点就设置为 Ture,如果不是就设置为 False。

  6. 利用特征值向量p,目标值是$K_p$,训练ID3树(决策树分类器)。

  7. 将构建好的决策树运用于其他图像的快速的检测。

1.1.3 非极大值抑制

在筛选出来的候选角点中有很多是紧挨在一起的,需要通过非极大值抑制来消除这种影响。

为所有的候选角点都确定一个打分函数V , V的值可这样计算:先分别计算I​p​​与圆上16个点的像素值差值,取绝对值,再将这16个绝对值相加,就得到了V的值

最后比较毗邻候选角点的 V 值,把V值较小的候选角点pass掉。

FAST算法的思想与我们对角点的直观认识非常接近,化繁为简。FAST算法比其它角点的检测算法快,但是在噪声较高时不够稳定,这需要设置合适的阈值。

1.2 实现

OpenCV中的FAST检测算法是用传统方法实现的,

1.实例化fast

fast = =cv.FastFeatureDetector_create( threshold, nonmaxSuppression)

参数:

  • threshold:阈值t,有默认值10
  • nonmaxSuppression:是否进行非极大值抑制,默认值True

返回:

  • Fast:创建的FastFeatureDetector对象

2.利用fast.detect检测关键点,没有对应的关键点描述

kp = fast.detect(grayImg, None)

参数:

  • gray: 进行关键点检测的图像,注意是灰度图像

返回:

  • kp: 关键点信息,包括位置,尺度,方向信息

3.将关键点检测结果绘制在图像上,与在sift中是一样的

cv.drawKeypoints(image, keypoints, outputimage, color, flags)

示例:

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
# 1 读取图像
img = cv.imread('./image/tv.jpg')
# 2 Fast角点检测
# 2.1 创建一个Fast对象,传入阈值,注意:可以处理彩色空间图像
fast = cv.FastFeatureDetector_create(threshold=30)# 2.2 检测图像上的关键点
kp = fast.detect(img,None)
# 2.3 在图像上绘制关键点
img2 = cv.drawKeypoints(img, kp, None, color=(0,0,255))# 2.4 输出默认参数
print( "Threshold: {}".format(fast.getThreshold()) )
print( "nonmaxSuppression:{}".format(fast.getNonmaxSuppression()) )
print( "neighborhood: {}".format(fast.getType()) )
print( "Total Keypoints with nonmaxSuppression: {}".format(len(kp)) )# 2.5 关闭非极大值抑制
fast.setNonmaxSuppression(0)
kp = fast.detect(img,None)print( "Total Keypoints without nonmaxSuppression: {}".format(len(kp)) )
# 2.6 绘制为进行非极大值抑制的结果
img3 = cv.drawKeypoints(img, kp, None, color=(0,0,255))# 3 绘制图像
fig,axes=plt.subplots(nrows=1,ncols=2,figsize=(10,8),dpi=100)
axes[0].imshow(img2[:,:,::-1])
axes[0].set_title("加入非极大值抑制")
axes[1].imshow(img3[:,:,::-1])
axes[1].set_title("未加入非极大值抑制")
plt.show()

结果:

2 ORB 算法

2.1 原理

SIFT和SURF算法是受专利保护的,在使用他们时我们是要付费的,但是ORB(Oriented Fast and Rotated Brief)不需要,它可以用来对图像中的关键点快速创建特征向量,并用这些特征向量来识别图像中的对象。

2.1.1 ORB算法流程

ORB算法结合了Fast和Brief算法,提出了构造金字塔,为Fast特征点添加了方向,从而使得关键点具有了尺度不变性和旋转不变性。具体流程描述如下:

  • 构造尺度金字塔,金字塔共有n层,与SIFT不同的是,每一层仅有一幅图像。第s层的尺度为:

σ​0​​是初始尺度,默认为1.2,原图在第0层。

第s层图像的大小:

  • 在不同的尺度上利用Fast算法检测特征点,采用Harris角点响应函数,根据角点的响应值排序,选取前N个特征点,作为本尺度的特征点。

  • 计算特征点的主方向,计算以特征点为圆心半径为r的圆形邻域内的灰度质心位置,将从特征点位置到质心位置的方向做特征点的主方向。

  • 为了解决旋转不变性,将特征点的邻域旋转到主方向上利用Brief算法构建特征描述符,至此就得到了ORB的特征描述向量。

2.1.2 BRIEF算法

BRIEF是一种特征描述子提取算法,并非特征点的提取算法,一种生成二值化描述子的算法,不提取代价低,匹配只需要使用简单的汉明距离(Hamming Distance)利用比特之间的异或操作就可以完成。因此,时间代价低,空间代价低,效果还挺好是最大的优点。

算法的步骤介绍如下

  1. 图像滤波:原始图像中存在噪声时,会对结果产生影响,所以需要对图像进行滤波,去除部分噪声。

  2. 选取点对:以特征点为中心,取S*S的邻域窗口,在窗口内随机选取N组点对,一般N=128,256,512,默认是256,关于如何选取随机点对,提供了五种形式,结果如下图所示:

    • x,y方向平均分布采样

    • x,y均服从Gauss(0,S^2/25)各向同性采样

    • x服从Gauss(0,S^2/25),y服从Gauss(0,S^2/100)采样

    • x,y从网格中随机获取

    • x一直在(0,0),y从网格中随机选取
       

    图中一条线段的两个端点就是一组点对,其中第二种方法的结果比较好。

  3. 构建描述符:假设x,y是某个点对的两个端点,p(x),p(y)是两点对应的像素值,则有:

    对每一个点对都进行上述的二进制赋值,形成BRIEF的关键点的描述特征向量,该向量一般为 128-512 位的字符串,其中仅包含 1 和 0,如下图所示:

2.2 实现

在OPenCV中实现ORB算法,使用的是:

1.实例化ORB

orb = cv.xfeatures2d.orb_create(nfeatures)

参数:

  • nfeatures: 特征点的最大数量

2.利用orb.detectAndCompute()检测关键点并计算

kp,des = orb.detectAndCompute(gray,None)

参数:

  • gray: 进行关键点检测的图像,注意是灰度图像

返回:

  • kp: 关键点信息,包括位置,尺度,方向信息
  • des: 关键点描述符,每个关键点BRIEF特征向量,二进制字符串,

3.将关键点检测结果绘制在图像上

cv.drawKeypoints(image, keypoints, outputimage, color, flags)

示例:

import numpy as np
import cv2 as cv
from matplotlib import pyplot as plt
# 1 图像读取
img = cv.imread('./image/tv.jpg')# 2 ORB角点检测
# 2.1 实例化ORB对象
orb = cv.ORB_create(nfeatures=500)
# 2.2 检测关键点,并计算特征描述符
kp,des = orb.detectAndCompute(img,None)print(des.shape)# 3 将关键点绘制在图像上
img2 = cv.drawKeypoints(img, kp, None, color=(0,0,255), flags=0)# 4. 绘制图像
plt.figure(figsize=(10,8),dpi=100)
plt.imshow(img2[:,:,::-1])
plt.xticks([]), plt.yticks([])
plt.show()


总结

  1. Fast算法

    原理:若一个像素周围有一定数量的像素与该点像素值不同,则认为其为角点

    API: cv.FastFeatureDetector_create()

  2. ORB算法

    原理:是FAST算法和BRIEF算法的结合

    API:cv.ORB_create()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/469511.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据结构之并查集:路径压缩继续优化并查集——20

路径压缩继续优化并查集 在实现的并查集中,在合并操作merge(item1, item2)时,会不管两个元素所在的分组大小,总是将item 1的分组合并到item2的分组,这样可能会导致树的深度无必要地增加: 如果是大树合并到小树上&…

数据结构之并查集:并查集解决案例, Python——21

并查集解决案例畅通工程 案例问题介绍: 某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府"畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还…

图像特征提取与描述_角点特征04:LBP算法+HOG特征算子

1.LBP算法 LBP(Local Binary Pattern)指局部二值模式,是一种用来描述图像局部特征的算子,LBP特征具有灰度不变性和旋转不变性等显著优点。它是由T. Ojala, M.Pietikinen, 和 D. Harwood在1994年提出,由于LBP特征计算简单、效果较好&#xff…

视频操作_01视频读写:视频读写+读取视频+保存视频

1 从文件中读取视频并播放 在OpenCV中我们要获取一个视频,需要创建一个VideoCapture对象,指定你要读取的视频文件: 1.创建读取视频的对象 cap cv.VideoCapture(filepath) 参数: filepath: 视频文件路径 2.视频的属性信息 2.1…

数据结构之图:无向图的介绍与功能实现,Python——22

无向图(Undigraph)的介绍 引入 生活中的图,有地图,集成电路板的图,可以看类似的看做是数据结构中的图数据有"一对一",“一对多”和“多对多”的关系,前两种分别表示线性表和树的存储…

视频操作_02视频追踪:meanshift算法+Camshift算法

1.meanshift 1.1原理 meanshift算法的原理很简单。假设你有一堆点集,还有一个小的窗口,这个窗口可能是圆形的,现在你可能要移动这个窗口到点集密度最大的区域当中。 如下图: 最开始的窗口是蓝色圆环的区域,命名为C1…

数据结构之图:图的搜索,Python代码实现——23

图的搜索 深度优先搜索(Depth First Search) 定义 从例子出发理解 DFS是一种用于遍历或搜寻树类或图类数据结构的算法,这种算法从根结点出发(如果是图,则任意选择一个顶点作为根结点),在回溯之前会尽可能地遍历每一…

人脸识别案例:【实战】opencv人脸检测+Haar特征分类器

1 基础 我们使用机器学习的方法完成人脸检测,首先需要大量的正样本图像(面部图像)和负样本图像(不含面部的图像)来训练分类器。我们需要从其中提取特征。下图中的 Haar 特征会被使用,就像我们的卷积核&…

数据结构之图:用图解决案例,Python代码实现——24

用图解决畅通工程案例与途径查找 代码中需要引入的类方法代码链接: 无向图Undigraph深度优先搜索DFS与广度优先搜索BFS 畅通工程-续 介绍 案例和之前并查集中实现的一样,但问题略有改动,需要判断9-10城市是否相通,9-8城市是否…

【在虚拟环境下完美解决】1698: error: (-215:Assertion failed) empty() in function cv::CascadeClassifier

问题描述 官方文档做的Demo发现遇到了错误提示如下: error: (-215:Assertion failed) !empty() in function ‘cv::CascadeClassifier::detectMultiScale’ 错误的原因: 出现 error: (-215:Assertion failed) !empty() in function ‘cv::CascadeClassif…

计算机视觉概述:视觉任务+场景领域+发展历程+典型任务

一、什么是计算机视觉 定义:计算机视觉(Computer vision)是⼀⻔研究如何使机器“看”的科学,更 进⼀步的说,就是指⽤摄影机和计算机代替⼈眼对⽬标进⾏识别、跟踪和测量 等,⽤计算机处理成为更适合⼈眼观察…

数据结构之图:有向图的介绍与实现,Python代码实现——25

有向图的介绍 引入 在实际生活中,很多应用相关的图都是有方向性的,最直观的就是网络,可以从A页面通过链接跳转到B页面,那么a和b连接的方向是a->b,但不能说是b->a,此时我们就需要使用有向图来解决这一类问题,它和我们之前学习的无向图,最大的区别就在于连接是具有方向的…

图像分类_01图像分类简介:挑战+近邻分类器+CIFAR-10数据集概述

2.1.1 图像分类 任务目的:对输入的图像赋予一个标签,这个标签在指定类别集合中。 下面这个例子中,图像分类模型拍摄一张图像并将概率分配给4个标签{cat,dog,hat,mug}。如图所示,请记住&#xf…

数据结构之图:有向图的拓扑排序,Python代码实现——26

有向图的拓扑排序 拓扑排序介绍 什么是拓扑排序? 一个有向图的拓扑排序(Topological sort 或 Topological ordering)是根据其有向边从顶点U到顶点V对其所有顶点的一个线性排序举个例子:让一个拓扑排序的图中的所有顶点代表某项…

图像分类_02神经网络(NN)简介:定义+ 感知机+历史

2.2.1 什么是神经网络 人工神经网络( Artificial Neural Network, 简写为ANN)也简称为神经网络(NN)。是一种模仿生物神经网络(动物的中枢神经系统,特别是大脑)结构和功能的 计算模型…

图像分类_03分类器及损失:线性分类+ SVM损失+Softmax 分类+交叉熵损失

2.3.1 线性分类 2.3.1.1 线性分类解释 上图图中的权重计算结果结果并不好,权重会给我们的猫图像分配⼀个⾮常低的猫分数。得出的结果偏向于狗。 如果可视化分类,我们为了⽅便,将⼀个图⽚理解成⼀个⼆维的点,在下⾯坐标中显示如下…

数据结构之图:加权无向图与寻找最小生成树,Python——27

加权无向图与prim算法和Kruskal算法寻找最小生成树 加权无向图的介绍 引入 加权无向图是一种为每条边关联一 个权重值或 是成本的图模型。这种图能够自然地表示许多应用。在一副航空图中,边表示航线,权值则可以表示距离或是费用。在一副电路图中,边表示导线,权值则可能表示导…

图像分类_04神经网络最优化过程:反向传播+代码实现

logistic模型原理与推导过程分析(1)https://blog.csdn.net/qq_39237205/article/details/121031296https://blog.csdn.net/qq_39237205/article/details/121031296 logistic模型原理与推导过程分析(2)https://blog.csdn.net/qq_3…

数据结构之图:加权有向图与dijkstra算法找到最短路径,Python——28

加权有向图与dijkstra算法找到最短路径 加权有向图的构造 最短路径问题与最短路径树 最短路径问题(The shortest path problem)定义 最短路径可以是时间花费最短,也可以是距离最短,或是花费最少在图论中,最短路径问…

李沐动手学深度学习pytorch :问题:找不到d2l包,No module named ‘d2l’

同学你好!本文章于2021年末编写,已与实际存在较大的偏差! 故在2022年末对本系列进行填充与更新,欢迎大家订阅最新的专栏,获取基于Pytorch1.10版本的理论代码(2023版)实现, Pytorch深度学习理论篇(2023版)…