代码里-3gt;gt;1是-2但3gt;gt;1是1,-3/2却又是-1,为什么?

之前群里有个同学向大家提出了类似这样的问题。随后这位同学公布了答案:右移运算是向下取整,除法是向零取整。这句话对以上现象做了很好的总结,可是本质原因是什么呢?

我一直以为-3>>1的结果是-1。所以打算思考一下这个问题。

补码

首先我们看看-3存储的形态是怎么样的:

int main()
{int n = -3;printf("0x%x",n);
}

打印结果为:

0xfffffffd

这是32位有符号数负数的补码形式,即0x3按位取反之后0xfffffffc再加一,即为0xfffffffd

为什么会有这样的“奇怪”的补码形式呢?首先一个32位的寄存器的值的范围是0~0xffffffff (8个f)。如果仅仅表示正数的话,即无符号整型数,所有的值都是正数的情况下范围是0~4294967295(0xffffffff)

那么如果我想表示负数呢???比如我想在计算机中表达-1这个数字,正1很简单就0x1嘛。那么根据1和-1相加等于0以及整型相加溢出的bit会被丢弃的特性,-1就可以是0xffffffff

例如:0xffffffff + 0x1 = 0x100000000(32bit计算机中此处最高位的1会被丢弃) = 0x00000000

0x1怎么转化成0xffffffff,就是按位取反(0xfffffffe)后再加一嘛,这个就是补码的说法了。

然后呢,正负两种数的范围就对半分吧。正数:0 ~ 0x7fffffff,负数:0x80000000 ~ 0xffffffff

0x80000000 是很特殊的数,和0一样,0x80000000只有和自己相加才会等于“零”。如果把0x80000000 归类成负数的话,那么就有一个明显的规律了,那就是最高位的bit为1的数都是负数,最高位bit为0的数都是正数。

这就是最高位是符号位的规定。

整型数字的移位(-3>>1为啥等于-2)

这里我们想确凿地弄清楚这个过程,只能借助汇编代码了。方法即为:

  1. 准备好一段C代码

  2. 编译这段代码

  3. 反汇编可执行文件,查看汇编代码

因为我更擅长一点arm的汇编代码,所以需要在 https://www.linaro.org/downloads/上下载arm的交叉编译工具链,这个比较方便,因为不需要编译,直接下载后就可以在Linux环境上执行了。

准备以下代码:

#include<stdio.h>
int shift(int a, int b)
{return (a >> b);
}unsigned int shift_u(unsigned int a, unsigned int b)
{return (a >> b);
}main(){int a = shift(-3, 1);unsigned int b = shift_u(3, 1);printf("[%d][%u]",a,b);
}

下载好linaro的gcc和glibc之后执行:

~/linro/gcc-linaro-7.5.0-2019.12-x86_64_arm-linux-gnueabihf/bin/arm-linux-gnueabihf-gcc test.c --sysroot=~/linro/sysroot-glibc-linaro-2.25-2019.12-arm-linux-gnueabihf/

然后反汇编:

~/linro/gcc-linaro-7.5.0-2019.12-x86_64_arm-linux-gnueabihf/bin/arm-linux-gnueabihf-objdump -d a.out

可以看到有符号的移位操作:

asr.w   r3, r2, r3

无符号数的移位操作:

lsr.w   r3, r2, r3

以上指令的意思是将r2的值右移r3次,并将结果赋值到r3中。

关于asr和lsr可以在官方文档中找到解释:https://developer.arm.com/documentation/dui0497/a/the-cortex-m0-instruction-set/about-the-instruction-descriptions/shift-operations

Arithmetic shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n places, into the right-hand 32-n bits of the result, and it copies the original bit[31] of the register into the left-hand n bits of the result

asr和lsr不同之处在于,asr指令会在移位之后,将原来的最高位bit[31]重新赋值到结果里。

所以-3 >> 1的过程应该是这样的:

0xfffffffd右移一位是0x7ffffffe,然后再置位最高位符号位,结果为:0xfffffffe,这就是-2的补码表现形式。

整型数字的除法(-3/2为啥等于-1)

那么为啥-3/2等于-1,难道在做除法的时候不会用移位进行优化吗?

多说无益,只能按照套路来反汇编,还是一样的套路代码。

#include<stdio.h>int div(int a, int b)
{return (a / b);
}unsigned int div_u(unsigned int a, unsigned int b)
{return (a / b);
}main(){int a = div(-3, 2);unsigned int b = div_u(3, 2);printf("[%d][%d]",a,b);
}

如果使用linaro上的armv8的交叉编译工具链,那么可以看到div函数调用的指令是:

sdiv    r3, r2, r3,

div_u函数调用的指令是:

udiv    r3, r2, r3

显然除法对于有符号数和无符号数做了区分,但是我们无法看到内部的区别,所以要用armv7的编译链反汇编,因为armv7没有直接的div指令,所以我们可以看到汇编中除法都做了什么。

此处我们主要看有符号数除法和无符号数除法的区别,而汇编篇幅太长,在此我只截取有符号数除法中有,而无符号数除法不存在也不需要的那部分代码,这样就能看到-3/2和3/2的区别。有符号数除法一开始的处理:

//此处被除数是r0,除数是r1
<__divsi3>:
cmp     r1, #0 //判断r1和0的关系,并更新cpsr寄存器
beq.w   1098a <.divsi3_skip_div0_test+0x27c> //如果除数等于0,那么跳转<.divsi3_skip_div0_test>:
eor.w   ip, r0, r1 //将除数和被除数进行异或并将结果存储到ip寄存器中,但是不会更新cpsr寄存器
it      mi //判断cpsr中的Negative Flag
negmi   r1, r1 //如果r1为负数则改成正数
subs    r2, r1, #1
beq.w   1095a <.divsi3_skip_div0_test+0x24c> //如果r1为1则跳转
movs    r3, r0
it      mi
negmi   r3, r0 //如果r0为负数则改成正数
//接下来就进行和无符号数一样的常规除法算法

以及有符号数除法对结果的处理:

cmp.w   ip, #0 
it      mi //如果异或结果为负,则表示被除数和除数的符号不相同,那么结果必然是负数
negmi   r0, r0 //如果异或结果为负,把结果赋成负值
bx      lr //返回到函数调用处的后一个指令

以上可以看到对有符号数的除法处理会这样:

  1. 记录除数和被除数的符号是否相同

  2. 将被除数和除数都转成正数

  3. 除法算法结束之后,根据第一步的结果,来决定是不是把结果赋值成负数。

所以-3/2的时候,会先计算3/2,得到1之后再赋值成-1

还记得那个神奇的数字0x80000000(-2147483648)吗,0x80000000乘以-1依然是0x80000000如果是这个数字除以2会是什么结果呢。

0x80000000/2的步骤如下:

  1. 记录两个数字异或结果,如果两个数字的符号位不同,说明结果为负,反之为正

  2. 对0x80000000进行乘以-1处理,结果依然还是0x80000000

  3. 将0x80000000当作是无符号数进行除以2操作得到:0x40000000

  4. 把0x40000000赋值为负数即为0xC0000000 (-1073741824)

以上就是arm中对于有符号数的移位和除法操作。如果你对汇编中的除法算法的具体步骤有兴趣的话,点个赞,下一篇arm除法汇编实现全面解析!Binfun已经把arm的汇编除法转译成C,并从中学习到了很多,敬请关注!

推荐阅读:

专辑|Linux文章汇总

专辑|程序人生

专辑|C语言

我的知识小密圈

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/466648.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

机器学习面试——逻辑回归和线性回归

1、什么是广义线性模型&#xff08;generalize linear model&#xff09;&#xff1f; 普通线性回归模型是假设X为自变量&#xff0c;Y为因变量&#xff0c;当X是一维的&#xff0c;y是一维的&#xff0c;共进行n次观测&#xff0c;则 其中&#xff0c;w是待估计的参数&#x…

STM32开发环境

STM32开发环境 宗旨&#xff1a;技术的学习是有限的&#xff0c;分享的精神是无限的。 一、MDK安装 MDK 是一个集代码编辑&#xff0c;编译&#xff0c;链接和下载于一体的集成开发环境&#xff08; KDE &#xff09;。MDK 这个名字我们可能不熟悉&#xff0c;但说到 KEIL …

机器学习面试——XGBoost,GBDT,RF(上)

1、常见的集成思想 bagging&#xff1a;基学习器之间并行训练&#xff0c;且学习器之间没有依赖&#xff0c;像是集体决策的过程&#xff0c;每个个体都进行单独学习&#xff0c;再通过投票的方式做最后的集体决策。常见的算法有随机森林 boosting&#xff1a;基学习器之间串…

听说有人不了解柔性数组

1 引言 定长数组包在平时的开发中&#xff0c;缓冲区数据收发时&#xff0c;如果采用缓冲区定长包&#xff0c;假定大小是 1k&#xff0c;MAX_LENGTH 为 1024。结构体如下&#xff1a;// 定长缓冲区 struct max_buffer {int len;char data[MAX_LENGTH]; };数据结构的大小 &…

Transformer模型拆解分析

资源来自&#xff1a;DataWhale 学习资料 最近看了DataWhale 的Transformer图解&#xff0c;突然对Transformer的结构图有了更加清晰的理解&#xff0c;特此记录。 1、大框架 Transformer是由6个encoder和6个decoder组成&#xff0c;模型的具体实现是model变量里边&#xff0…

设计模式学习笔记六:.NET反射工厂

1&#xff0e; 简述 通过前面的学习&#xff0c;我们以传统的方式实现了简单工厂&#xff0c;工厂方法和抽象工厂&#xff0c;但是有些场合下如此处理&#xff0c;代码会变得冗余并且难以维护。假设我们要创建交通工具。可以是汽车&#xff0c;火车&#xff0c;轮船等&#xff…

在unity 中,使用http请求,下载文件到可读可写路径

在这里我用了一个线程池&#xff0c;线程池参数接收一个带有object参数的&#xff0c;无返回值的委托 &#xff0c;下载用到的核心代码&#xff0c;网上拷贝的&#xff0c;他的核心就是发起一个web请求&#xff0c;然后得到请求的响应&#xff0c;读取响应的流 剩下的都是常见的…

在tinyalsa上抓取音频

我们经常会遇到这样的问题&#xff0c;应用读取到的音频有问题&#xff0c;需要在tinyalsa里面读取音频来确认是底层音频有问题&#xff0c;还是应用处理之后存在的问题。所以&#xff0c;这个patch就出现了代码的逻辑很简单&#xff0c;主要是在pcm_read的时候&#xff0c;同时…

STM32——GPIO(1)

STM32——GPIO 宗旨&#xff1a;技术的学习是有限的&#xff0c;分享的精神是无限的。 【对单片机的操作就是控制IO口】 一、GPIO&#xff08;通用输入输出口&#xff09; 1、选定需要的引脚&#xff08;对应哪一个IO口&#xff09;&#xff1b; 2、配置需要的功能&#xf…

【opencv学习笔记八】创建TrackBar轨迹条

createTrackbar这个函数我们以后会经常用到&#xff0c;它创建一个可以调整数值的轨迹条&#xff0c;并将轨迹条附加到指定的窗口上&#xff0c;使用起来很方便。首先大家要记住&#xff0c;它往往会和一个回调函数配合起来使用。先看下他的函数原型&#xff1a; int createTra…

父母悄悄给自己买房,我很生气,要怎么调整心态?

——问题我是独生子&#xff0c;今年满24岁刚上研一&#xff08;普通211&#xff09;。家庭四川小城市&#xff0c;情况一般&#xff0c;父母二人体制内月薪总计一万元以内&#xff0c;家里积蓄20W-30W&#xff0c;公积金情况不清楚。从小母子关系比较僵硬&#xff0c;母亲小学…

语音处理入门——语音的声学处理

语音的声学处理通常称为特征提取或者信号分析&#xff0c;特征是表示语音信号的一个时间片的矢量。常见的特征类型有LPC&#xff08;线性预测编码&#xff09;特征和PLP&#xff08;感知线性预测编码&#xff09;&#xff0c;该特征称为声谱特征&#xff0c;使用形成波形的不同…

基础呀基础,用二极管防止反接,你学会了吗?

使用新的电源&#xff0c;第一次给设备供电时&#xff0c;要特别注意电源的正负极性标注。比如电源适配器&#xff0c;铭牌上面有标注插头的极性。这个符号说明插头的里面是正极&#xff0c;外面是负极&#xff0c;即“内正外负”。但是也有反过来的&#xff0c;下面这款是“内…

李宏毅的可解释模型——三个任务

1、问题 观看了李宏毅老师的机器学习进化课程之可解释的机器学习&#xff0c;课程中对主要是针对黑盒模型进行白盒模型转化的技巧和方法进行了简单介绍&#xff0c;详细细节可以参考《Interpretable Machine Learning》。像一些线性模型、树形模型是可解释的ML model&#xff…

柔性数组和环形队列之间的故事

之前的文章&#xff0c;讲解了柔性数组&#xff0c;有很多人留言&#xff0c;提到一些问题。刚好&#xff0c;之前发关于环形队列的文章有些问题&#xff0c;这次刚好拿出来一起说一下&#xff0c;并用柔性数组实现一个环形队列。柔性数组的上一篇文章环形队列C语言实现文章1、…

STM32——时钟系统

STM32——时钟系统 宗旨&#xff1a;技术的学习是有限的&#xff0c;分享的精神是无限的。 一、时钟树 普通的MCU&#xff0c;一般只要配置好GPIO 的寄存器&#xff0c;就可以使用了。STM32为了实现低功耗&#xff0c;设计了非常复杂的时钟系统&#xff0c;必须开启外设时钟才…

目标检测发展路程(一)——Two stage

目标检测是计算机视觉领域中非常重要的一个研究方向&#xff0c;它是将图像或者视频中目标与其他不感兴趣的部分进行区分&#xff0c;判断是否存在目标&#xff0c;确定目标位置&#xff0c;识别目标种类的任务&#xff0c;即定位分类。传统的目标检测模型有VJ.Det[1,2],HOG.De…

都2021年了,c/c++开发竟然还能继续吃香??

年后就迎来了金三银四&#xff0c;你准备好2021年的跳槽涨薪计划了吗&#xff1f;今天我就来给大家分享&#xff0c;c/c作为老牌开发常青树&#xff0c;还能与java/python/go较较劲的岗位和技术在哪里&#xff01;同时&#xff0c;给大家整理了2021年系统全面技术学习资料。文末…

目标检测模型——One stage(YOLO v5的模型解析及应用)

1. 简介 目标检测分为Two stage和One stage,只使用一个网络同时产生候选区域并预测出物体的类别和位置&#xff0c;所以它们通常被叫做单阶段检测算法&#xff08;One stage&#xff09;。本篇文章只讲One stage模型&#xff0c;常见的模型有YOLO&#xff0c;SSD。 目标检测发…

腾讯回应QQ读取用户浏览器历史记录

腾讯QQ官方认证账号在知乎回应“QQ扫描读取所有浏览器的历史记录”表示&#xff0c;PC QQ存在读取浏览器历史用以判断用户登录安全风险的情况&#xff0c;读取的数据用于在PC QQ的本地客户端中判断是否恶意登录。所有相关数据不会上传至云端&#xff0c;不会储存&#xff0c;也…