STM32启动文件——startup_stm32f10x_hd.s
宗旨:技术的学习是有限的,分享的精神是无限的。
一、启动文件的作用
(关于启动代码的作用,前面已经提到过了,这里再啰嗦一下)
(1)初始化堆栈指针 SP;
(2)初始化程序计数器指针 PC;
(3)设置堆、栈的大小;
(4)设置异常向量表的入口地址;
(5)配置外部 SRAM作为数据存储器(这个由用户配置,一般的开发板可没有外部 SRAM);
(6)设置 C库的分支入口__main(最终用来调用 main函数);
(7)在 3.5版的启动文件还调用了在 system_stm32f10x.c文件中的SystemIni()函数配置系统时钟。
二、启动文件中提到的汇编指令
指令 | 作用 |
EQU | 给数字常量取一个符号名,相当于 C 语言中的 define |
AREA | 汇编一个新的代码段或者数据段 |
SPACE | 分配内存空间 |
PRESERVE8 | 当前文件堆栈需按照 8 字节对齐 |
EXPORT | 声明一个标号具有全局属性,可被外部的文件使用 |
DCD | 以字为单位分配内存,要求 4 字节对齐,并要求初始化这些内存 |
PROC | 定义子程序,与 ENDP 成对使用,表示子程序结束 |
WEAK | 弱定义,如果外部文件声明了一个标号,则优先使用外部文件定义的标号,如果外部文件没有定义也不出错。 |
IMPORT | 声明标号来自外部文件,跟 C 语言中的 EXTERN 关键字类似 |
B | 跳转到一个标号 |
ALIGN | 编译器对指令或者数据的存放地址进行对齐,一般需要跟一个立即 |
END | 到达文件的末尾,文件结束 |
IF,ELSE,ENDIF | 汇编条件分支语句,跟 C 语言的类似 |
LDR | 从存储器中加载字到一个寄存器中 |
BL | 跳转到由寄存器/标号给出的地址,并把跳转前的下条指令地址保存到 LR |
BLX | 跳转到由寄存器给出的地址,并根据寄存器的 LSE 确定处理器的状态,还要把跳转前的下条指令地址保存到 LR |
BX | 跳转到由寄存器/标号给出的地址,不用返回 |
三、启动代码详解
1、stack——栈
Stack_Size EQU 0x00000400AREA STACK, NOINIT, READWRITE,ALIGN=3
Stack_Mem SPACE Stack_Size
__initial_sp
分配名为STACK,不初始化,可读可写,8(2^3)字节对齐的1KB空间。
栈:局部变量,函数形参等。栈的大小不能超过内部SRAM大小。
AREA:汇编一个新的代码段或者数据段。STACK段名,任意命名;NOINIT表示不初始化;READWRITE可读可写;ALIGN=3(2^3= 8字节对齐)。
__initial_sp紧挨了SPACE放置,表示栈的结束地址,栈是从高往低生长,结束地址就是栈顶地址。
2、heap——堆
Heap_Size EQU 0x00000200AREA HEAP, NOINIT, READWRITE,ALIGN=3
__heap_base
Heap_Mem SPACE Heap_Size
__heap_limit
分配名为HEAP,不初始化,可读可写,8(2^3)字节对齐的512字节空间。__heap_base堆的起始地址,__heap_limit堆的结束地址。堆由低向生长。动态分配内存用到堆。
PRESERVE8 //指定当前文件的堆栈按照 8 字节对齐。
THUMB //表示后面指令兼容 THUMB 指令。THUBM 是ARM 以前的指令集,16bit,现在 Cortex-M 系列的都使用 THUMB-2 指令集,THUMB-2 是32 位的,兼容 16 位和 32 位的指令,是 THUMB 的超级。
3、向量表
AREA RESET, DATA, READONLYEXPORT __VectorsEXPORT __Vectors_EndEXPORT __Vectors_Size
定义一个名为RESET,可读的数据段。并声明 __Vectors、__Vectors_End 和__Vectors_Size 这三个标号可被外部的文件使用。
__Vectors DCD __initial_sp ; Top of StackDCD Reset_Handler ; Reset HandlerDCD NMI_Handler ; NMI HandlerDCD HardFault_Handler ; Hard Fault HandlerDCD MemManage_Handler ; MPU Fault HandlerDCD BusFault_Handler ; Bus Fault HandlerDCD UsageFault_Handler ; Usage Fault HandlerDCD 0 ; ReservedDCD 0 ; ReservedDCD 0 ; ReservedDCD 0 ; ReservedDCD SVC_Handler ; SVCall HandlerDCD DebugMon_Handler ; Debug Monitor HandlerDCD 0 ; ReservedDCD PendSV_Handler ; PendSV HandlerDCD SysTick_Handler ; SysTick Handler; External InterruptsDCD WWDG_IRQHandler ; Window WatchdogDCD PVD_IRQHandler ; PVD through EXTI Line detectDCD TAMPER_IRQHandler ; TamperDCD RTC_IRQHandler ; RTCDCD FLASH_IRQHandler ; FlashDCD RCC_IRQHandler ; RCCDCD EXTI0_IRQHandler ; EXTI Line 0DCD EXTI1_IRQHandler ; EXTI Line 1DCD EXTI2_IRQHandler ; EXTI Line 2DCD EXTI3_IRQHandler ; EXTI Line 3DCD EXTI4_IRQHandler ; EXTI Line 4DCD DMA1_Channel1_IRQHandler ; DMA1Channel 1DCD DMA1_Channel2_IRQHandler ; DMA1Channel 2DCD DMA1_Channel3_IRQHandler ; DMA1Channel 3DCD DMA1_Channel4_IRQHandler ; DMA1Channel 4DCD DMA1_Channel5_IRQHandler ; DMA1Channel 5DCD DMA1_Channel6_IRQHandler ; DMA1Channel 6DCD DMA1_Channel7_IRQHandler ; DMA1 Channel 7DCD ADC1_2_IRQHandler ; ADC1 & ADC2DCD USB_HP_CAN1_TX_IRQHandler ; USBHigh Priority or CAN1 TXDCD USB_LP_CAN1_RX0_IRQHandler; USB Low Priority or CAN1 RX0DCD CAN1_RX1_IRQHandler ; CAN1 RX1DCD CAN1_SCE_IRQHandler ; CAN1 SCEDCD EXTI9_5_IRQHandler ; EXTI Line 9..5DCD TIM1_BRK_IRQHandler ; TIM1 BreakDCD TIM1_UP_IRQHandler ; TIM1 UpdateDCD TIM1_TRG_COM_IRQHandler ; TIM1Trigger and CommutationDCD TIM1_CC_IRQHandler ; TIM1 Capture CompareDCD TIM2_IRQHandler ; TIM2DCD TIM3_IRQHandler ; TIM3DCD TIM4_IRQHandler ; TIM4DCD I2C1_EV_IRQHandler ; I2C1 EventDCD I2C1_ER_IRQHandler ; I2C1 ErrorDCD I2C2_EV_IRQHandler ; I2C2 EventDCD I2C2_ER_IRQHandler ; I2C2 ErrorDCD SPI1_IRQHandler ; SPI1DCD SPI2_IRQHandler ; SPI2DCD USART1_IRQHandler ; USART1DCD USART2_IRQHandler ; USART2DCD USART3_IRQHandler ; USART3DCD EXTI15_10_IRQHandler ; EXTI Line 15..10DCD RTCAlarm_IRQHandler ; RTC Alarm through EXTI LineDCD USBWakeUp_IRQHandler ; USB Wakeup from suspendDCD TIM8_BRK_IRQHandler ; TIM8 BreakDCD TIM8_UP_IRQHandler ; TIM8 UpdateDCD TIM8_TRG_COM_IRQHandler ; TIM8Trigger and CommutationDCD TIM8_CC_IRQHandler ; TIM8 Capture CompareDCD ADC3_IRQHandler ; ADC3DCD FSMC_IRQHandler ; FSMCDCD SDIO_IRQHandler ; SDIODCD TIM5_IRQHandler ; TIM5DCD SPI3_IRQHandler ; SPI3DCD UART4_IRQHandler ; UART4DCD UART5_IRQHandler ; UART5DCD TIM6_IRQHandler ; TIM6DCD TIM7_IRQHandler ; TIM7DCD DMA2_Channel1_IRQHandler ; DMA2Channel1DCD DMA2_Channel2_IRQHandler ; DMA2Channel2DCD DMA2_Channel3_IRQHandler ; DMA2Channel3DCD DMA2_Channel4_5_IRQHandler; DMA2 Channel4 & Channel5
__Vectors_End
__Vectors_Size EQU __Vectors_End - __Vectors
__Vectors 为向量表起始地址,__Vectors_End 为向量表结束地址,两个相减即可算出向量表大小。
向量表从 FLASH 的 0 地址开始放置,以 4 个字节为一个单位,地址 0 存放的是栈顶地址,0X04 存放的是复位程序的地址,以此类推。从代码上看,向量表中存放的都是中断服务函数的函数名,可我们知道 C 语言中的函数名就是一个地址。
4、复位程序
AREA |.text|, CODE, READONLY
定义一个名为.text,可读的代码段
Reset_Handler PROCEXPORT Reset_Handler [WEAK]IMPORT __mainIMPORT SystemInitLDR R0, =SystemInitBLX R0 LDR R0, =__mainBX R0ENDP
复位子程序是系统上电后第一个执行的程序,调用 SystemInit ()函数初始化系统时钟,然后调用 C 库函数_main。
5、终端服务子程序
NMI_Handler PROCEXPORT NMI_Handler [WEAK]B .ENDP
HardFault_Handler\PROCEXPORT HardFault_Handler [WEAK]B .ENDP
MemManage_Handler\PROCEXPORT MemManage_Handler [WEAK]B .ENDP
此处省略部分……
启动文件里面已经帮我们写好所有中断的中断服务函数,跟我们平时写的中断服务函数不一样的就是这些函数都是空的,真正的中断复服务程序需要我们在外部的 C 文件里面重新实现,这里只是提前占了一个位置而已。
如果我们在使用某个外设的时候,开启了某个中断,但是又忘记编写配套的中断服务程序或者函数名写错,那当中断来临的时,程序就会跳转到启动文件预先写好的空的中断服务程序中,并且在这个空函数中无线循环,即程序就死在这里。
B:跳到一个“.”,表示无限循环。
6、用户堆栈初始化
ALIGN
ALIGN:对指令或者数据存放的地址进行对齐,后面会跟一个立即数。缺省表示 4 字节对齐。
IF :DEF:__MICROLIBEXPORT __initial_spEXPORT __heap_baseEXPORT __heap_limitELSEIMPORT __use_two_region_memoryEXPORT __user_initial_stackheap__user_initial_stackheapLDR R0, = Heap_MemLDR R1, =(Stack_Mem +Stack_Size)LDR R2, = (Heap_Mem + Heap_Size)LDR R3, = Stack_MemBX LRALIGNENDIFEND
判断是否定义了__MICROLIB ,如果定义了则赋予标号__initial_sp(栈顶地址)、__heap_base(堆起始地址)、__heap_limit(堆结束地址)全局属性,可供外部文件调用。如果没有定义(实际的情况就是我们没定义__MICROLIB)则使用默认的 C 库,然后初始化用户堆栈大小,这部分有 C 库函数__main 来完成。