[Leetcode][第114题][JAVA][二叉树展开为链表][递归][迭代]

【问题描述】[中等]

在这里插入图片描述

【解答思路】

1. 前序遍历

将二叉树展开为单链表之后,单链表中的节点顺序即为二叉树的前序遍历访问各节点的顺序。因此,可以对二叉树进行前序遍历,获得各节点被访问到的顺序。
由于将二叉树展开为链表之后会破坏二叉树的结构,因此在前序遍历结束之后更新每个节点的左右子节点的信息,将二叉树展开为单链表。

时间复杂度:O(N) 空间复杂度:O(N)
在这里插入图片描述

递归(自上而下)

class Solution {public void flatten(TreeNode root) {List<TreeNode> list = new ArrayList<TreeNode>();preorderTraversal(root, list);int size = list.size();for (int i = 1; i < size; i++) {TreeNode prev = list.get(i - 1), curr = list.get(i);prev.left = null;prev.right = curr;}}public void preorderTraversal(TreeNode root, List<TreeNode> list) {if (root != null) {list.add(root);preorderTraversal(root.left, list);preorderTraversal(root.right, list);}}
}

迭代
时间复杂度:O(N) 空间复杂度:O(N)

class Solution {public void flatten(TreeNode root) {List<TreeNode> list = new ArrayList<TreeNode>();Deque<TreeNode> stack = new LinkedList<TreeNode>();TreeNode node = root;while (node != null || !stack.isEmpty()) {while (node != null) {list.add(node);stack.push(node);node = node.left;}node = stack.pop();node = node.right;}int size = list.size();for (int i = 1; i < size; i++) {TreeNode prev = list.get(i - 1), curr = list.get(i);prev.left = null;prev.right = curr;}}
}
2. 前序遍历和展开同时进行

在这里插入图片描述

时间复杂度:O(N) 空间复杂度:O(N)
在这里插入图片描述

class Solution {public void flatten(TreeNode root) {if (root == null) {return;}Deque<TreeNode> stack = new LinkedList<TreeNode>();stack.push(root);TreeNode prev = null;while (!stack.isEmpty()) {TreeNode curr = stack.pop();if (prev != null) {prev.left = null;prev.right = curr;}TreeNode left = curr.left, right = curr.right;//先右后左if (right != null) {stack.push(right);}if (left != null) {stack.push(left);}prev = curr;}}
}
3. 前驱节点

前两种方法都借助前序遍历,前序遍历过程中需要使用栈存储节点。有没有空间复杂度是 O(1)O(1) 的做法呢?

注意到前序遍历访问各节点的顺序是根节点、左子树、右子树。如果一个节点的左子节点为空,则该节点不需要进行展开操作。如果一个节点的左子节点不为空,则该节点的左子树中的最后一个节点被访问之后,该节点的右子节点被访问。该节点的左子树中最后一个被访问的节点是左子树中的最右边的节点,也是该节点的前驱节点。因此,问题转化成寻找当前节点的前驱节点。

步骤
对于当前节点,如果其左子节点不为空,则在其左子树中找到最右边的节点,作为前驱节点,将当前节点的右子节点赋给前驱节点的右子节点,然后将当前节点的左子节点赋给当前节点的右子节点,并将当前节点的左子节点设为空。对当前节点处理结束后,继续处理链表中的下一个节点,直到所有节点都处理结束。

时间复杂度:O(N) 空间复杂度:O(1)
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

class Solution {public void flatten(TreeNode root) {TreeNode curr = root;while (curr != null) {if (curr.left != null) {TreeNode next = curr.left;TreeNode predecessor = next;while (predecessor.right != null) {predecessor = predecessor.right;}predecessor.right = curr.right;curr.left = null;curr.right = next;}curr = curr.right;}}
}

递归写法

    1/ \2   5/ \   \
3   4   6//将 1 的左子树插入到右子树的地方1\2         5/ \         \3   4         6        
//将原来的右子树接到左子树的最右边节点1\2          / \          3   4  \5\6//将 2 的左子树插入到右子树的地方1\2          \          3       4  \5\6   //将原来的右子树接到左子树的最右边节点1\2          \          3      \4  \5\6         

递归版本
在这里插入图片描述

相应的左孩子也要置为 null,同样的也不用担心左孩子丢失,因为是后序遍历,左孩子已经遍历过了

private TreeNode pre = null;public void flatten(TreeNode root) {if (root == null)return;flatten(root.right);flatten(root.left);root.right = pre;root.left = null;pre = root;
}

【总结】

1. 解法一二 自顶向下 解法三 自底向上
2.List接口常用方法
// 1、将指定的元素,添加到该集合中的指定位置上。
public void add(int index, E element)// 2、返回集合中指定位置的元素。
public E get(int index)// 3、移除列表中指定位置的元素,返回的是被移除的元素。
public E remove(int index)// 4、用指定元素替换集合中指定位置的元素,返回值的更新前的元素。
public E set(int index, E element)
3.递归

在实现递归函数之前,有两件重要的事情需要弄清楚:

递推关系:一个问题的结果与其子问题的结果之间的关系。
基本情况:不需要进一步的递归调用就可以直接计算答案的情况。可理解为递归跳出条件。
一旦我们计算出以上两个元素,再想要实现一个递归函数,就只需要根据递推关系调用函数本身,直到其抵达基本情况。

转载链接:https://leetcode-cn.com/problems/flatten-binary-tree-to-linked-list/solution/er-cha-shu-zhan-kai-wei-lian-biao-by-leetcode-solu/

参考链接:https://leetcode-cn.com/problems/flatten-binary-tree-to-linked-list/solution/xiang-xi-tong-su-de-si-lu-fen-xi-duo-jie-fa-by–26/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/425039.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

第三十八期:美国数据隐私保护法案来临,明年1月生效,现仅2%企业合规

2018 年美国加州通过消费者隐私法案&#xff08;CCPA&#xff09;&#xff0c;缓冲一年多后&#xff0c;将于 2020 年 1 月生效。届时&#xff0c;类似于欧盟的法案&#xff0c;CCPA 将对所有和美国加州居民有业务的数据商业行为进行监管。 依然在应付欧盟数据保护法案(GDPR)的…

二元随机变量

本章记录  1二元随机变量的定义  2二元离散型随机变量的定义、联合概率分布律、边际分布律、条件分布律  3二元离散型随机变量联合概率分布律函数、边际分布函数、条件分布函数  4二元连续型随机变量的定义、联合概率密度函数、边际密度函数、条件密度函数 二元随机变…

第三十九期:原生图数据库的15条规则

不妨看一下原生图形数据库的15条规则。就像复杂的系统网格或空中交通管制图&#xff0c;图形数据库用节点和连接组成的网络(名为标记属性图)来表示。节点显示为圆形或正方形&#xff0c;代表人员、产品、公司或订单等实体。 就像复杂的系统网格或空中交通管制图&#xff0c;图形…

[周赛第200场][Leetcode][第5477题][第5478题][JAVA][双指针][贪心]

【问题描述】[中等]5477. 排布二进制网格的最少交换次数 【解答思路】 贪心 限制条件 第一行要求末尾的0要尽量多 计算每行最后有几个0遍历交互 符合条件 第i行的末尾0的数量为n-i-1 统计交换次数第i行的末尾0的数量小于n-i-1&#xff0c;不符合条件 时间复杂度&#xff1a…

ubuntu异常关机,断电重启后进入紧急模式,挂载磁盘SSD失败了怎么办?(Failed mount on XXX)

解决方案&#xff1a; 进入/etc/fstab中保留你所有的除了必要的系统分区挂载点&#xff0c;这里保存了所有开机引导的时候自动挂载到linux文件系统里的设备还有分区信息&#xff0c;当系统启动的时候&#xff0c;系统会在这里读取信息并挂载到相应目录下。所有的磁盘硬盘SSD挂…

6项目启动

项目启动概述

[Leetcode][第415题][JAVA][字符串相加][双指针]

【问题描述】[简单] 【解答思路】 1. 双指针 从两个字符串最后开始处理 对齐字符串添加当前位 int c abcnt; cnt为进位超过长度的补“0” 要注意最后有可能需要处理溢出位 时间复杂度&#xff1a;O(max(M,N)) 空间复杂度&#xff1a;O(1) public String addStrings(String nu…

401 binary watch

文章题目来源于leetcode&#xff0c;解法学习了讨论去的解法。  问题&#xff1a;有一种二进制LED表。上面的4个LED灯表示小时&#xff0c;下面6个LED灯表示分钟。给定一个int值&#xff0c;写出可能表示的时间。例如输入1&#xff0c; Input: n 1 Return: [“1:00”, “2…

7立项申请

项目诞生的驱动因素 系统服务请求书 识别需求提出项目建议书 项目建议书内容 项目的可行性研究 如何进行项目的可行性研究 市场可行性研究 市场可行性分析注意事项 捕捉用户需求是一件困难的事 三个苹果改变世界 经济可行性 收益与成本 投入产出分析 投资分析期 纯收入 技术可行…

【数据结构与算法】数组与链表

数组的定义和特性 数组&#xff08;Array&#xff09;是一种线性表数据结构。它用一组连续的内存空间&#xff0c;来存储一组具有相同类型的数据。 线性表&#xff08;Linear List&#xff09;&#xff1a;数组、链表、队列、栈 非线性表&#xff1a;树 图 连续的内存空间和相…

8构建项目组

组建项目组 组建项目组的任务 项目组架构 项目赞助人职责 项目经理的标签 项目经理的责任 项目成员的职责 案例分析 西天取经的只能架构 西天取经项目组 一个良好团队的七个要素

MySQL数据库面试题

目录数据库基础知识为什么要使用数据库什么是SQL&#xff1f;什么是MySQL?数据库三大范式是什么mysql有关权限的表都有哪几个MySQL的binlog有有几种录入格式&#xff1f;分别有什么区别&#xff1f;数据类型mysql有哪些数据类型引擎MySQL存储引擎MyISAM与InnoDB区别MyISAM索引…

log双线性模型log-bilinear model简单概括

LBLM(log-bilinear model)是自然语言处理中的比较简单的模型。LBLM根据上下文的词向量来预测下一个词向量wnw_nwn​&#xff0c;通过对上下文词向量的一个线性组合来表示&#xff1a; rwr_wrw​是一个实数值词向量对于词www对于下一个词的分布计算根据wnw_nwn​预测表示和所有…

9制定项目章程

项目干系人概述 项目主要干系人 项目章程 项目章程的功能 项目章程

【数据结构与算法】栈与队列

栈 一、什么是栈&#xff1f; 1.后进者先出&#xff0c;先进者后出&#xff0c;这就是典型的“栈”结构。 2.从栈的操作特性来看&#xff0c;是一种“操作受限”的线性表&#xff0c;只允许在端插入和删除数据。 二、为什么需要栈&#xff1f; 1.栈是一种操作受限的数据结构…

线性代数的本质笔记-更新ing

1. 序言 线性代数不光要会计算&#xff0c;还要理解掌握其几何直观。 2. 向量究竟是什么&#xff1f; 物理学&#xff1a;向量是空间中的箭头&#xff0c;具有长度和方向两个属性。计算机&#xff1a;向量是一个有序数表。比如房屋的参数信息可以根据相关属性按准许列成一个…

10项目开工会

立项启动准备 启动会的任务 如何进行项目启动

[Leetcode][第337题][JAVA][打家劫舍3][递归][动态规划]

【问题描述】[中等] 【解答思路】 1. 动态规划 第 1 步&#xff1a;状态定义 dp[node][j] &#xff1a;这里 node 表示一个结点&#xff0c;以 node 为根结点的树&#xff0c;并且规定了 node 是否偷取能够获得的最大价值。 j 0 表示 node 结点不偷取&#xff1b; j 1 表示…